This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. The objective of the Kansas INBRE Bioinformatics Network is to serve the needs of investigators engaged in computationally intensive biomedical research, and to promote education in bioinformatics to students and researchers across the state of Kansas. To accomplish these goals the K-INBRE Bioinformatics Core has established and maintains a network of Bioinformatics Cores at the 3 major Kansas research institutions: University of Kansas Medical Center (KUMC), University of Kansas in Lawrence (KU-L) and Kansas State University (KSU).
The specific aims of the Bioinformatics Core are to: 1) Evaluate, acquire / develop and maintain computational resources (hardware and software) that directly complement K-INBRE network research goals, 2) develop and deliver training material, including workshops and contributions to credit courses, that facilitate practical application of these resources by K-INBRE students, postdoctoral fellows and faculty, 3) cultivate resource usage by informing students and researchers across the network of our services and offering consultation to researchers in application of bioinformatics resources to their research, 4) collaborate directly with K-INBRE researchers to formulate and apply complex methods to biomedical research goals, 5) develop new research opportunities that marry informatics with wet lab activities, and 6) facilitate information pipelines that foster collaboration, multidisciplinary science and clinical translation. By fulfilling these aims, the K-INBRE Bioinformatics Core will advance research programs of existing investigators, and contribute to the preparation of the next generation of biomedical researchers.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR016475-11
Application #
8359741
Study Section
Special Emphasis Panel (ZRR1-RI-4 (01))
Project Start
2011-05-01
Project End
2012-04-30
Budget Start
2011-05-01
Budget End
2012-04-30
Support Year
11
Fiscal Year
2011
Total Cost
$543,427
Indirect Cost
Name
University of Kansas
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
016060860
City
Kansas City
State
KS
Country
United States
Zip Code
66160
Pang, Xiao-Yan; Wang, Suya; Jurczak, Michael J et al. (2017) Retinol saturase modulates lipid metabolism and the production of reactive oxygen species. Arch Biochem Biophys 633:93-102
Barton, Janice S; Schomacker, Rachel (2017) Comparative protein profiles of the Ambrosia plants. Biochim Biophys Acta 1865:633-639
Dowdell, Alexander S; Murphy, Maxwell D; Azodi, Christina et al. (2017) Comprehensive Spatial Analysis of the Borrelia burgdorferi Lipoproteome Reveals a Compartmentalization Bias toward the Bacterial Surface. J Bacteriol 199:
Chakrabarti, Rima S; Ingham, Sally A; Kozlitina, Julia et al. (2017) Variability of cholesterol accessibility in human red blood cells measured using a bacterial cholesterol-binding toxin. Elife 6:
Bowden, John A; Heckert, Alan; Ulmer, Candice Z et al. (2017) Harmonizing lipidomics: NIST interlaboratory comparison exercise for lipidomics using SRM 1950-Metabolites in Frozen Human Plasma. J Lipid Res 58:2275-2288
Guilford, B L; Ryals, J M; Lezi, E et al. (2017) Dorsal Root Ganglia Mitochondrial Biochemical Changes in Non-diabetic and Streptozotocin-Induced Diabetic Mice Fed with a Standard or High-Fat Diet. J Neurol Neurosci 8:
Rogers, Robert S; Tungtur, Sudheer; Tanaka, Tomohiro et al. (2017) Impaired Mitophagy Plays a Role in Denervation of Neuromuscular Junctions in ALS Mice. Front Neurosci 11:473
Moon, Sanghee; Schmidt, Marshall; Smirnova, Irina V et al. (2017) Qigong Exercise May Reduce Serum TNF-? Levels and Improve Sleep in People with Parkinson's Disease: A Pilot Study. Medicines (Basel) 4:
Pook, Victoria G; Nair, Meera; Ryu, KookHui et al. (2017) Positioning of the SCRAMBLED receptor requires UDP-Glc:sterol glucosyltransferase 80B1 in Arabidopsis roots. Sci Rep 7:5714
Kania-Korwel, Izabela; Wu, Xianai; Wang, Kai et al. (2017) Identification of lipidomic markers of chronic 3,3',4,4',5-pentachlorobiphenyl (PCB 126) exposure in the male rat liver. Toxicology 390:124-134

Showing the most recent 10 out of 639 publications