This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. A fundamental problem in biology is to understand how cells are able to sense and respond to environment cues. The integration of chemical signals such as growth factors and cytokines with mechanical stimuli is not well understood. The place where cascades involved in solid-state (mechanical) signaling and soluble (chemical) signaling converge and the manner in which they interact is no doubt complex. This research project is designed to investigate signaling events associated with both chemical and mechanical stimuli. Cells of the vascular system are continuously exposed to the effects of mechanical forces such as stretching and fluid shear stress. These forces, which are created by the pulsatile nature of blood flow when the heart contracts and relaxes, have a marked influence on cell structure and function. The adaptations of these cells, including enhanced growth and migration, seem to be important in the pathological conditions that accompany cardiovascular diseases such as atherosclerosis, hypertension, and restenosis. Cardiovascular disease remains a major cause of morbidity and mortality in the U.S. and the economic and human costs associated with these pathologies are enormous. This has resulted in an intense research interest in the mechanisms which regulate contraction, migration, and growth of vascular smooth muscle cells (VSMC). While it is now clear that mechanical forces imposed on cells of the vessel wall are important factors in the initiation and progression of pathological changes, the molecular mechanisms involved in these adaptations are not fully understood. In addition, it is now clear that the basic mechanism of smooth muscle contraction can only be explained in light of actin remodeling. However, the exact nature of cytoskeletal reorganization and the mechanisms regulating these changes are not well known. The overall goal of this project is to elucidate the acute responses in cytoskeletal reorganization that occur during mechanical stress of VSMC and to determine the intracellular signaling mechanisms that are involved. Utilizing molecular approaches combined with fluorescence microscopy, and relying on the precise changes in cell orientation and actin cytoskeletal reorganization as endpoints for quantitative assessment of responsiveness to mechanical strain, we will evaluate the role of various cytoskeletal structures on the response of VSMC to stretch. Further, we will make a systematic determination of the effects of various types of mechanical stress on activation of cell signaling molecules. In addition, we will evaluate the effects of resveratrol, a purported cardioprotective molecule, for its potential effects on stretch-induced cell signaling and receptor mediated cellular hypertrophy. The use of pharmacologic and molecular techniques to stabilize, destabilize or down-regulate specific cytoskeletal components is expected to provide clear answers concerning the role of specific components in mechanotransduction and the cell orientation response. The inhibition or down-regulation of specific signaling proteins is expected to provide information concerning pathways regulating mechanosensing and transduction. The knowledge gained may be useful in the development of therapeutic agents regulating mechanotransduction mechanisms contributing to cardiovascular pathologies.

National Institute of Health (NIH)
National Center for Research Resources (NCRR)
Exploratory Grants (P20)
Project #
Application #
Study Section
Special Emphasis Panel (ZRR1-RI-4 (01))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Marshall University
Schools of Medicine
United States
Zip Code
Zhang, Yu; Chen, Shiguo; Wei, Chaoyang et al. (2018) Dietary Compound Proanthocyanidins from Chinese bayberry (Myrica rubra Sieb. et Zucc.) leaves inhibit angiogenesis and regulate cell cycle of cisplatin-resistant ovarian cancer cells via targeting Akt pathway. J Funct Foods 40:573-581
Zhang, Yu; Chen, Shiguo; Wei, Chaoyang et al. (2018) Dietary compound proanthocyanidins from Chinese bayberry (Myrica rubra Sieb. et Zucc.) leaves attenuate chemotherapy-resistant ovarian cancer stem cell traits via targeting the Wnt/?-catenin signaling pathway and inducing G1 cell cycle arrest. Food Funct 9:525-533
Gao, Ying; Yin, Junfeng; Rankin, Gary O et al. (2018) Kaempferol Induces G2/M Cell Cycle Arrest via Checkpoint Kinase 2 and Promotes Apoptosis via Death Receptors in Human Ovarian Carcinoma A2780/CP70 Cells. Molecules 23:
Pan, Haibo; Li, Jin; Rankin, Gary O et al. (2018) Synergistic effect of black tea polyphenol, theaflavin-3,3'-digallate with cisplatin against cisplatin resistant human ovarian cancer cells. J Funct Foods 46:1-11
Zhang, Shichao; Xing, Malcolm M Q; Li, Bingyun (2018) Capsule Integrated Polypeptide Multilayer Films for Effective pH-Responsive Multiple Drug Co-Delivery. ACS Appl Mater Interfaces :
Zhang, Yu; Chen, Shiguo; Wei, Chaoyang et al. (2018) Flavonoids from Chinese bayberry leaves induced apoptosis and G1 cell cycle arrest via Erk pathway in ovarian cancer cells. Eur J Med Chem 147:218-226
Jia, Ling-Yan; Wu, Xue-Jin; Gao, Ying et al. (2017) Inhibitory Effects of Total Triterpenoid Saponins Isolated from the Seeds of the Tea Plant (Camellia sinensis) on Human Ovarian Cancer Cells. Molecules 22:
Pan, Haibo; Wang, Fang; Rankin, Gary O et al. (2017) Inhibitory effect of black tea pigments, theaflavin?3/3'-gallate against cisplatin-resistant ovarian cancer cells by inducing apoptosis and G1 cell cycle arrest. Int J Oncol 51:1508-1520
Kocher, Caitlin; Christiansen, Matthew; Martin, Sarah et al. (2017) Sexual dimorphism in obesity-related genes in the epicardial fat during aging. J Physiol Biochem 73:215-224
Alway, Stephen E; McCrory, Jean L; Kearcher, Kalen et al. (2017) Resveratrol Enhances Exercise-Induced Cellular and Functional Adaptations of Skeletal Muscle in Older Men and Women. J Gerontol A Biol Sci Med Sci 72:1595-1606

Showing the most recent 10 out of 199 publications