This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Our long-term goal is to understand the roles of protein phosphatases in regulating p53 signaling pathway during DNA damage response and tumorigenesis. In this proposal, we will concentrate on the regulation of MdmX-p53 auto-regulatory feedback loop by protein phosphatases. MdmX inhibits the transcriptional activity of the tumor suppressor p53 that is induced by DNA damage or oncogenic stresses. Overexpression of MdmX and aberrant p53 regulation lead to deregulated cell growth and contribute to tumorigenesis. High levels of MdmX associate with 24.6% of various human cancers. In particular, MdmX is overexpressed in 18.5% of human colorectal cancers. Thus, MdmX must be tightly controlled in cells. Recently, we have identified Wip1, a ser/thr protein phosphatase, as a homeostatic regulator of MdmX. Our recent studies demonstrated that Wip1 directly dephosphorylates MdmX at the ATM-targeted Ser403. Wip1 inhibits the DNA damage-induced ubiquitination and degradation of MdmX, leading to the stabilization of MdmX and reduction of p53 activities. In addition to Wip1, three isoforms of Protein Phosphatase 1 (PP1) have also been identified as positive regulators for MdmX. In light of these exciting findings, we hypothesize that protein phosphatases may play a physiological role in the regulation of the MdmX-p53 pathway. Hence, we will use in vivo and intro approaches to systematically investigate this previously untested hypothesis in this proposal.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR017698-10
Application #
8360353
Study Section
Special Emphasis Panel (ZRR1-RI-5 (01))
Project Start
2011-06-01
Project End
2013-05-31
Budget Start
2011-06-01
Budget End
2013-05-31
Support Year
10
Fiscal Year
2011
Total Cost
$35,375
Indirect Cost
Name
University of South Carolina at Columbia
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
041387846
City
Columbia
State
SC
Country
United States
Zip Code
29208
Wyatt, Michael D; Reilly, Nicole M; Patel, Shikha et al. (2018) Thiopurine-induced mitotic catastrophe in Rad51d-deficient mammalian cells. Environ Mol Mutagen 59:38-48
Montalvo, Ryan N; Hardee, Justin P; VanderVeen, Brandon N et al. (2018) Resistance Exercise's Ability to Reverse Cancer-Induced Anabolic Resistance. Exerc Sport Sci Rev 46:247-253
Eberth, Jan M; Thibault, Annie; Caldwell, Renay et al. (2018) A statewide program providing colorectal cancer screening to the uninsured of South Carolina. Cancer 124:1912-1920
Mentrup, Heather L; Hartman, Amanda; Thames, Elizabeth L et al. (2018) The ubiquitin ligase ITCH coordinates small intestinal epithelial homeostasis by modulating cell proliferation, differentiation, and migration. Differentiation 99:51-61
Oliver, David; Ji, Hao; Liu, Piaomu et al. (2017) Identification of novel cancer therapeutic targets using a designed and pooled shRNA library screen. Sci Rep 7:43023
Alexander, M; Burch, J B; Steck, S E et al. (2017) Case-control study of candidate gene methylation and adenomatous polyp formation. Int J Colorectal Dis 32:183-192
Zhang, Yu; Davis, Celestia; Shah, Sapana et al. (2017) IL-33 promotes growth and liver metastasis of colorectal cancer in mice by remodeling the tumor microenvironment and inducing angiogenesis. Mol Carcinog 56:272-287
Gao, Feng J; Shi, Liang; Hines, Timothy et al. (2017) Insulin signaling regulates a functional interaction between adenomatous polyposis coli and cytoplasmic dynein. Mol Biol Cell 28:587-599
Hardee, Justin P; Montalvo, Ryan N; Carson, James A (2017) Linking Cancer Cachexia-Induced Anabolic Resistance to Skeletal Muscle Oxidative Metabolism. Oxid Med Cell Longev 2017:8018197
Peña, Edsel A; Wu, Wensong; Piegorsch, Walter et al. (2017) Model Selection and Estimation with Quantal-Response Data in Benchmark Risk Assessment. Risk Anal 37:716-732

Showing the most recent 10 out of 140 publications