Significant biomedical therapies are likely to result from novel biomaterials that are designed at the molecular level to offer customized control over their mechanical and biological properties. The realization of such biomaterials requires the formation of productive research relationships between the diverse communities of organic chemistry, molecular design, biology, biophysical chemistry, and materials engineering. Furthermore, the ultimate clinical implementation of new biomaterials will require consistent interactions between research scientists and the medical practitioners who can eventually translate fundamental research into the clinic. The proposed COBRE renewal application """"""""Molecular Design of Responsive Biomaterials"""""""" will focus on the design of biomaterials for regeneration of liver and vocal fold tissues, and for drug-lead identification and payload delivery. A common design principle is that the macroscopic properties of these materials can be controlled in large part by the conformational properties and biological specificity of the constituent molecular building blocks, and that new chemical strategies and characterization methods will be integral to their design. Materials will be developed by evaluating of the interplay between material structure and morphology, mechanical properties, biochemical interactions, in vitro cell-material interactions, and in vivo tissue responses. These studies will ultimately generate materials systems that are optimized for their intended applications. The organization of the proposed center capitalizes on the scientific successes of our current COBRE individual subprojects, which have developed expertise and state-of-the-art Core facilities for chemical, biochemical, and materials methodologies applicable to a broad spectrum of biomaterials. In addition to these scientific aims, the proposed center activities will also enhance faculty development and infrastructure development through the integration of the research team, expansion of active mentoring programs at the University of Delaware (UD), additions to the instrumentation Core, establishment of new seed areas, and strategic new hires. Our research team brings together junior and early-career scientists from the UD Departments of Chemistry and Biochemistry, Materials Science and Engineering, and Chemical Engineering who will be mentored by internationally known experts in their fields. The team will also collaborate with senior investigators from UD and with clinicians from the state of Delaware's flagship research hospitals- Christiana Care and A.I. duPont Hospital for Children, which will integrate biomaterials research in the state of Delaware. These efforts, coupled with new hires and projects, will establish a dynamic environment for interdisciplinary biomedical research that will increase the research competitiveness of the investigators and the team and will bring new science and potential technology to the biomaterials community.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR017716-09
Application #
8131111
Study Section
National Center for Research Resources Initial Review Group (RIRG)
Program Officer
Canto, Maria Teresa
Project Start
2002-09-16
Project End
2013-07-31
Budget Start
2011-08-01
Budget End
2012-07-31
Support Year
9
Fiscal Year
2011
Total Cost
$1,552,499
Indirect Cost
Name
University of Delaware
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
059007500
City
Newark
State
DE
Country
United States
Zip Code
19716
Li, Linqing; Stiadle, Jeanna M; Levendoski, Elizabeth E et al. (2018) Biocompatibility of injectable resilin-based hydrogels. J Biomed Mater Res A 106:2229-2242
Drolen, Claire; Conklin, Eric; Hetterich, Stephen J et al. (2018) pH-Driven Mechanistic Switching from Electron Transfer to Energy Transfer between [Ru(bpy)3]2+ and Ferrocene Derivatives. J Am Chem Soc 140:10169-10178
Potocny, Andrea M; Riley, Rachel S; O'Sullivan, Rachel K et al. (2018) Photochemotherapeutic Properties of a Linear Tetrapyrrole Palladium(II) Complex displaying an Exceptionally High Phototoxicity Index. Inorg Chem 57:10608-10615
Potocny, Andrea M; Pistner, Allen J; Yap, Glenn P A et al. (2017) Electrochemical, Spectroscopic, and 1O2 Sensitization Characteristics of Synthetically Accessible Linear Tetrapyrrole Complexes of Palladium and Platinum. Inorg Chem 56:12703-12711
Li, Linqing; Stiadle, Jeanna M; Lau, Hang K et al. (2016) Tissue engineering-based therapeutic strategies for vocal fold repair and regeneration. Biomaterials 108:91-110
Li, Linqing; Mahara, Atsushi; Tong, Zhixiang et al. (2016) Recombinant Resilin-Based Bioelastomers for Regenerative Medicine Applications. Adv Healthc Mater 5:266-75
Ooms, Kristopher J; Vega, Alexander J; Polenova, Tatyana et al. (2015) Double and zero quantum filtered (2)H NMR analysis of D2O in intervertebral disc tissue. J Magn Reson 258:6-11
Suiter, Christopher L; Quinn, Caitlin M; Lu, Manman et al. (2015) MAS NMR of HIV-1 protein assemblies. J Magn Reson 253:10-22
Li, Linqing; Luo, Tianzhi; Kiick, Kristi L (2015) Temperature-triggered phase separation of a hydrophilic resilin-like polypeptide. Macromol Rapid Commun 36:90-5
Lau, Hang Kuen; Kiick, Kristi L (2015) Opportunities for multicomponent hybrid hydrogels in biomedical applications. Biomacromolecules 16:28-42

Showing the most recent 10 out of 177 publications