The mission of the Penn ADCC is to increase research and education on AD, related dementias, normal brain aging and mild cognitive impairment (MCI), as well as support development of better diagnostics and preventions/treatments for AD and related disorders. The Penn ADCC provides research training, stimulates new research on normal aging and neurodegenerative dementias as well as development of novel techniques to address the challenges of conducting research on these disorders. The Penn ADCC is a highly interdisciplinary and seamlessly integrated Center with 5 Cores that collaborate extensively with other investigators at and beyond Penn, including the NIH/NIA funded AD Centers (ADCs), NACC, AD Cooperative Study (ADCS), AD Education and Referral (ADEAR) Center, the AD Neuroimaging Initiative (ADNI), AD Genetics Consortium (ADGC) and other NIH/public/private initiatives on AD, related disorders and healthy brain aging.
The Aims of the Penn ADCC are implemented through: 1) Administrative Core A to oversee and direct the activities of the ADCC;2) Clinical Core B to recruit, follow and study subjects with AD, MCI or related disorders and controls;3) Data Management and Biostatistics Core C to provide data management and biostatistical expertise;4) Neuropathology, Genetics and Biomarker Core D to establish postmortem diagnoses on ADCC subjects, and bank CNS tissues, DNA and biofluids from ADCC subjects for diagnostic studies and research;5) Education, Recruitment and Retention Core E to develop, implement and monitor recruitment and retention programs and ensure that the ADCC team as well as patients and families have up to- date knowledge of AD and related diseases;6) Pilot Grant Program to stimulate novel research on AD and related disorders;7) Collaborations with other investigators at and beyond Penn to improve diagnostics and treatments for AD and related disorders as well as increase understanding of these conditions and promote healthy brain aging. In summary, the Penn ADCC contributes to US and global strategies to meet the worldwide challenges of rapidly aging populations and the epidemic of AD and related disorders. In alignment with NIA RFA-AG-11- 005, the Penn ADCC accomplishes its mission in the renewal period through research on AD and related disorders as well as normal aging and through education to increase understanding of these disorders and their global effects.

Public Health Relevance

of the Penn ADCC is that it challenges/re-defines current clinical practice paradigms and research on AD and related disorders as well as MCI and normal aging by utilizing novel concepts and approaches to achieve the goals of this ADCC which are to increase research and education on AD, related dementias, normal brain aging and MCI, as well as support development of better diagnostics and preventions/treatments for AD and related disorders.

National Institute of Health (NIH)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZAG1)
Program Officer
Silverberg, Nina B
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pennsylvania
Schools of Medicine
United States
Zip Code
Moelter, Stephen T; Glenn, Megan A; Xie, Sharon X et al. (2015) The Dementia Severity Rating Scale predicts clinical dementia rating sum of boxes scores. Alzheimer Dis Assoc Disord 29:158-60
Russ, Jenny; Liu, Elaine Y; Wu, Kathryn et al. (2015) Hypermethylation of repeat expanded C9orf72 is a clinical and molecular disease modifier. Acta Neuropathol 129:39-52
Cary, Mark S; Rubright, Jonathan D; Grill, Joshua D et al. (2015) Why are spousal caregivers more prevalent than nonspousal caregivers as study partners in AD dementia clinical trials? Alzheimer Dis Assoc Disord 29:70-4
McMillan, Corey T; Toledo, Jon B; Avants, Brian B et al. (2014) Genetic and neuroanatomic associations in sporadic frontotemporal lobar degeneration. Neurobiol Aging 35:1473-82
Yarchoan, Mark; Toledo, Jon B; Lee, Edward B et al. (2014) Abnormal serine phosphorylation of insulin receptor substrate 1 is associated with tau pathology in Alzheimer's disease and tauopathies. Acta Neuropathol 128:679-89
Ryvkin, Paul; Leung, Yuk Yee; Ungar, Lyle H et al. (2014) Using machine learning and high-throughput RNA sequencing to classify the precursors of small non-coding RNAs. Methods 67:28-35
Lee, Edward B; Mattson, Mark P (2014) The neuropathology of obesity: insights from human disease. Acta Neuropathol 127:3-28
Ferrari, Raffaele; Hernandez, Dena G; Nalls, Michael A et al. (2014) Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurol 13:686-99
Olm, Christopher A; McMillan, Corey T; Spotorno, Nicola et al. (2014) The relative contributions of frontal and parietal cortex for generalized quantifier comprehension. Front Hum Neurosci 8:610
Millard, Steven P; Lutz, Franziska; Li, Ge et al. (2014) Association of cerebrospinal fluid A*42 with A2M gene in cognitively normal subjects. Neurobiol Aging 35:357-64

Showing the most recent 10 out of 199 publications