The goal of the Oxidative Damage and Mitochondrial Function Core is two-fold. First, we will continue to provide measurement of oxidative damage to lipid, DNA and protein in cells and tissues using the latest and most sensitive methods and technologic approaches. The second and new function of the Core is to provide several key assays of mitochondrial function including measures of reactive oxygen species generation, respiration and ATP production in isolated mitochondria and in cultured cells. Compromised mitochondrial function and accumulation of oxidative damage to cell components with age have been proposed as primary factors underlying age-associated alterations in physiologic function and pathology. A number of recent studies have suggested that the relation between mitochondrial dysfunction, oxidative damage and aging may not be as straightforward as originally proposed by Hamian more than 50 years ago. However, measures of oxidative damage and mitochondrial function continue to be important components of many studies on the underlying mechanisms of aging and age-related disease, and it is critical that these measures are done with the highest possible sensitivity and accuracy. The measurements offered by the Core require costly equipment and technologic expertise that prevent these types of analyses as routine measures in individual laboratories.
The Specific Aims of the Oxidative Damage and Mitochondrial Function Core are as follows: 1. To provide sensitive and accurate measurements of oxidative damage to lipids, DNA and protein through analysis of F2-isoprostanes/isofurans (lipid oxidation), 8-oxo-2-deoxyguanosine (oxo8dG) (DNA oxidation), and oxidative modifications to proteins (carbonyls, disulfide content and alterations in protein hydrophobicity). 2. To provide high quality sensitive measurement of mitochondrial function in isolated mitochondria and cell culture using state-of-the-art techniques. 3. To provide education and consultation regarding methodology for assessing oxidative damage and mitochondrial function.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Center Core Grants (P30)
Project #
5P30AG013319-18
Application #
8572568
Study Section
Special Emphasis Panel (ZAG1-ZIJ-2 (M1))
Project Start
1997-07-15
Project End
2015-06-30
Budget Start
2012-07-15
Budget End
2013-06-30
Support Year
18
Fiscal Year
2012
Total Cost
$105,709
Indirect Cost
$34,921
Name
University of Texas Health Science Center San Antonio
Department
Type
DUNS #
800772162
City
San Antonio
State
TX
Country
United States
Zip Code
78229
Salmon, Adam B; Dorigatti, Jonathan; Huber, Hillary F et al. (2018) Maternal nutrient restriction in baboon programs later-life cellular growth and respiration of cultured skin fibroblasts: a potential model for the study of aging-programming interactions. Geroscience 40:269-278
Gelfond, Jonathan; Goros, Martin; Hernandez, Brian et al. (2018) A System for an Accountable Data Analysis Process in R. R J 10:6-21
Sills, Aubrey M; Artavia, Joselyn M; DeRosa, Brian D et al. (2018) Long-term treatment with the mTOR inhibitor rapamycin has minor effect on clinical laboratory markers in middle-aged marmosets. Am J Primatol :e22927
Xu, Ming; Pirtskhalava, Tamar; Farr, Joshua N et al. (2018) Senolytics improve physical function and increase lifespan in old age. Nat Med 24:1246-1256
Unnikrishnan, Archana; Hadad, Niran; Masser, Dustin R et al. (2018) Revisiting the genomic hypomethylation hypothesis of aging. Ann N Y Acad Sci 1418:69-79
Van Skike, Candice E; Jahrling, Jordan B; Olson, Angela B et al. (2018) Inhibition of mTOR protects the blood-brain barrier in models of Alzheimer's disease and vascular cognitive impairment. Am J Physiol Heart Circ Physiol 314:H693-H703
Mao, Kai; Quipildor, Gabriela Farias; Tabrizian, Tahmineh et al. (2018) Late-life targeting of the IGF-1 receptor improves healthspan and lifespan in female mice. Nat Commun 9:2394
Lee, Hak Joo; Feliers, Denis; Barnes, Jeffrey L et al. (2018) Hydrogen sulfide ameliorates aging-associated changes in the kidney. Geroscience 40:163-176
Kang, Donghoon; Kirienko, Daniel R; Webster, Phillip et al. (2018) Pyoverdine, a siderophore from Pseudomonas aeruginosa, translocates into C. elegans, removes iron, and activates a distinct host response. Virulence 9:804-817
Hook, Michael; Roy, Suheeta; Williams, Evan G et al. (2018) Genetic cartography of longevity in humans and mice: Current landscape and horizons. Biochim Biophys Acta Mol Basis Dis 1864:2718-2732

Showing the most recent 10 out of 231 publications