The purpose of the Aging Animal and Longevity Assessment Core is to provide Center investigators and researchers in aging outside the University with a broad spectrum of uniformly maintained, specific-pathogen free rodent models for the study of aging, according to their needs. The Core will continue to play a central role in the Nathan Shock Aging Center. All animals in the Core will be supported by NIA or other aging grants. The Core will breed, maintain and monitor aging rodent colonies, determine their longevity and age-related changes in weight, body composition and food intake, and distribute these animals to Center members and others for basic research on aging. In addition, the Core will maintain for pilot studies small populations of two murine models that Center investigators have recently found to have exceptional potential for understanding fundamental mechanisms of aging: 1) rapamycin-treated genetically heterogeneous mice and 2) two groups of recombinant inbred mouse strains at the extremes of the distribution of strain responses to calorie restriction (CR) ? one group of strains that shows characteristic life extension in response to CR and the other group of strains that responds with life shortening. These and other advances enabled by this Core underscore its importance as a generator of biogerontologic discovery.
The Specific Aims of the Core are as follows: 1 To breed and maintain new and established rodent models for study of the mechanism of aging and/or age-related disease processes. To conduct lifespan studies of genetically, nutritionally, or pharmacologically manipulated models according to the requirements of investigators funded by the NIA and other granting sources. To provide animal models of exceptional biogerontological interest for baseline pilot studies. To provide diets containing rapamycin and other drugs to the biogerontological community at large. To educate and advise faculty, fellows, and students interested in aging on the special requirements of animal husbandry in aging research.

Public Health Relevance

The Aging Animal and Longevity Assessment Core has played a key role in many of the important discoveries supported by Shock Center Cores, including the finding of drugs that extend mouse lifespan, tests of the oxidative stress theory of aging, and the discovery that the life-extending effect of calorie restriction may not be universal. By providing staff trained in specialized care of aging animals, reliable and reproducible determinations of longevity, and some of the longest lived mice at any institution,, this Core will continue to serve as an important resource to aging investigators both locally and nationally.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZAG1-ZIJ-2)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas Health Science Center San Antonio
San Antonio
United States
Zip Code
Branch, Sarah Y; Sharma, Ramaswamy; Beckstead, Michael J (2014) Aging decreases L-type calcium channel currents and pacemaker firing fidelity in substantia nigra dopamine neurons. J Neurosci 34:9310-8
Ratnam, Sarayu; Engler, Peter; Bozek, Grazyna et al. (2014) Identification of Ssm1b, a novel modifier of DNA methylation, and its expression during mouse embryogenesis. Development 141:2024-34
Zhang, Yiqiang; Bokov, Alex; Gelfond, John et al. (2014) Rapamycin extends life and health in C57BL/6 mice. J Gerontol A Biol Sci Med Sci 69:119-30
Edrey, Yael H; Salmon, Adam B (2014) Revisiting an age-old question regarding oxidative stress. Free Radic Biol Med 71:368-78
Boiko, Nina; Kucher, Volodymyr; Wang, Bin et al. (2014) Restrictive expression of acid-sensing ion channel 5 (asic5) in unipolar brush cells of the vestibulocerebellum. PLoS One 9:e91326
Liu, Yuhong; Diaz, Vivian; Fernandez, Elizabeth et al. (2014) Rapamycin-induced metabolic defects are reversible in both lean and obese mice. Aging (Albany NY) 6:742-54
Elbourkadi, Najoua; Austad, Steven N; Miller, Richard A (2014) Fibroblasts from long-lived species of mammals and birds show delayed, but prolonged, phosphorylation of ERK. Aging Cell 13:283-91
Hasty, Paul; Livi, Carolina B; Dodds, Sherry G et al. (2014) eRapa restores a normal life span in a FAP mouse model. Cancer Prev Res (Phila) 7:169-78
Fok, Wilson C; Bokov, Alex; Gelfond, Jonathan et al. (2014) Combined treatment of rapamycin and dietary restriction has a larger effect on the transcriptome and metabolome of liver. Aging Cell 13:311-9
Strong, Randy; Miller, Richard A; Astle, Clinton M et al. (2013) Evaluation of resveratrol, green tea extract, curcumin, oxaloacetic acid, and medium-chain triglyceride oil on life span of genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci 68:6-16

Showing the most recent 10 out of 144 publications