Aging is a virtually ubiquitous, progressive degenerative process. However nature has repeatedly produced species with both exceptional resistance, and exceptional susceptibility, to aging. We call these """"""""species of exceptional biogerontological interest"""""""" (= EBl species), because of their potential to inform us both about the identity and nature of the destructive mechanisms that cause senescence as well as protective mechanisms of exceptional resistance to these mechanisms. The comparative biology of aging employs EBl species to address these issues. The overarching goal of the Comparative 8iology of Aging Core is to provide to researchers high quality, hard-to-get biological research materials from EBl species. Among mammals, we define EBl species as those living <0.7 times as long as expected for their body size (the longevity of a mouse or less) or >2.5 times as long as expected for its body size (the longevity of an average monkey or more). Additionally, because of their close evolutionary affinity with humans, we consider any primate regardless of longevity an EBl species. An important caveat is that we will only use species for which there is solid and unassailable documentation of longevity.
The Specific Aims of the Comparative Biology of Aging Core are as follows: 1. Procure, crvopreserve. and provide to investigators cells and tissues from EBl species. A critical part of this aim is to ensure that cell culture growth conditions are optimized for each species. A second important component of this aim is to assure that biological materials come from healthy animals of known age. A final critical component to this aim is to communicate to the wider aging research community the availability of these biological materials to interested scientists. 2. Maintain research colonies, or purchase animals or tissues, of selected EBl species.
This aim ensures that samples, even of fresh tissues, may be continuously available to the research community and takes advantage of the exceptional combination of extensive professional contacts in the comparative biology community and expertise in the husbandry of individual EBl species available at UTHSCSA. 3. Provide consultation and feasibility assessment for investigators wishing to pursue comparative aging studies. The Leader and Co-leaders of this core are uniquely positioned in terms of their expertise and contacts within the wider zoological research community to provide information, assessment, and guidance to interested investigators.

Public Health Relevance

This core provides resources to help determine mechanisms that retard aging, with the long-term goal of the development of therapies to slow human aging. This would enhance and preserve human health. Because aging is the ultimate cause of many late life maladies, the research has the potential to not only enhance health but delay and mitigate numerous late life diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Center Core Grants (P30)
Project #
5P30AG013319-20
Application #
8701174
Study Section
Special Emphasis Panel (ZAG1-ZIJ-2)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
20
Fiscal Year
2014
Total Cost
$116,208
Indirect Cost
$38,476
Name
University of Texas Health Science Center
Department
Type
DUNS #
800772162
City
San Antonio
State
TX
Country
United States
Zip Code
78229
Van Skike, Candice E; Jahrling, Jordan B; Olson, Angela B et al. (2018) Inhibition of mTOR protects the blood-brain barrier in models of Alzheimer's disease and vascular cognitive impairment. Am J Physiol Heart Circ Physiol 314:H693-H703
Mao, Kai; Quipildor, Gabriela Farias; Tabrizian, Tahmineh et al. (2018) Late-life targeting of the IGF-1 receptor improves healthspan and lifespan in female mice. Nat Commun 9:2394
Lee, Hak Joo; Feliers, Denis; Barnes, Jeffrey L et al. (2018) Hydrogen sulfide ameliorates aging-associated changes in the kidney. Geroscience 40:163-176
Kang, Donghoon; Kirienko, Daniel R; Webster, Phillip et al. (2018) Pyoverdine, a siderophore from Pseudomonas aeruginosa, translocates into C. elegans, removes iron, and activates a distinct host response. Virulence 9:804-817
Hook, Michael; Roy, Suheeta; Williams, Evan G et al. (2018) Genetic cartography of longevity in humans and mice: Current landscape and horizons. Biochim Biophys Acta Mol Basis Dis 1864:2718-2732
Van Skike, Candice E; Galvan, Veronica (2018) A Perfect sTORm: The Role of the Mammalian Target of Rapamycin (mTOR) in Cerebrovascular Dysfunction of Alzheimer's Disease: A Mini-Review. Gerontology 64:205-211
Kraig, Ellen; Linehan, Leslie A; Liang, Hanyu et al. (2018) A randomized control trial to establish the feasibility and safety of rapamycin treatment in an older human cohort: Immunological, physical performance, and cognitive effects. Exp Gerontol 105:53-69
Ungvari, Zoltan; Tarantini, Stefano; Donato, Anthony J et al. (2018) Mechanisms of Vascular Aging. Circ Res 123:849-867
Weiss, Roxanne; Fernandez, Elizabeth; Liu, Yuhong et al. (2018) Metformin reduces glucose intolerance caused by rapamycin treatment in genetically heterogeneous female mice. Aging (Albany NY) :
Qin, Kunhua; Zhang, Ning; Zhang, Zhao et al. (2018) SIRT6-mediated transcriptional suppression of Txnip is critical for pancreatic beta cell function and survival in mice. Diabetologia 61:906-918

Showing the most recent 10 out of 231 publications