The major objective of the University of Alabama (DAB) Center for AIDS Research (CFAR) Flow Cytometry Core is to provide state-of-the-art flow cytometry services to support AIDS research programs. Flow cytometry is a unique and powerful technology for analyzing the fluorescent properties of particles and can be readily applied to determining the phenotype and function of cells, as well as utilized for isolating defined cell populations by sorting. In recent years the use of flow cytometric analyses in HIV research has become ever more prominent as newer approaches for dissecting the interactions between HIV and cells of the immune system have been developed;fluorescent based reporter systems have been harnessed to monitor virus replication, reactivation, and recombination;and sophisticated technological advances in instrumentation have provided new platforms for high-speed polychromatic analyses and cell sorting. The CFAR flow cytometry core is, therefore, a vital and versatile resource for promoting and facilitating AIDS research. The flow cytometry core's mission is to maximize the benefits of this technology by providing the necessary instrumentation within a well organized, centralized, facility that is capable of handling potentially infectious material. It provides training opportunities and consultations, and it also serves as a conduit for fostering interactions between investigators and laboratory personnel with diverse interests and expertise. During the previous funding period the CFAR flow cytometry core has undergone a significant equipment upgrade, with the installation of a BDFACSAria cell sorter as well as a BD-LSR-II analytical flow cytometer. The flow cytometry core has also improved its visibility and accessibility as well as enhanced education and training initiatives. As a result of these endeavors the usage of the flow cytometry core has increased more than three-fold since 2002. The flow cytometry core has supported the research activities of 184 different individuals from 69 Principle Investigators laboratories and has contributed to basic, clinical, and translational initiatives in the areas of viral pathogenesis, anti-viral research, cellular immunity, and vaccine design. The core has supported the activities of 88 NIH grants and contributed to 172 publications The aims of the flow cytometry core are to now build upon our progress-to-date by further enhancing services, and education and training activities so that users are empowered to take full advantage of the sophisticated instrumentation that is available. These efforts include, based on a needs assessment analysis, the installation of a third flow cytometer and a BioPlex flow cytometer for multiplexed analysis of biomolecules (e.g. cytokines) in the beginning of 2008. We also aim to promote innovation by working with users, and fostering collaborations and crosscore partnerships that encourage cutting-edge AIDS related research activities.

Public Health Relevance

Flow cytometric analysis has emerged as a crucial tool to study how HIV-1 infection causes disease and death. It has and will continue to be instrumental to develop a deeper understanding towards better treatment strategies and potentially a vaccine against HIV-1. The CFAR Flow Cytometry Core thus provides an essential bridge between basic research efforts and translational clinical investigation.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Center Core Grants (P30)
Project #
5P30AI027767-24
Application #
8379108
Study Section
Special Emphasis Panel (ZAI1-SV-A)
Project Start
Project End
Budget Start
2012-06-01
Budget End
2013-05-31
Support Year
24
Fiscal Year
2012
Total Cost
$568,252
Indirect Cost
$176,602
Name
University of Alabama Birmingham
Department
Type
DUNS #
063690705
City
Birmingham
State
AL
Country
United States
Zip Code
35294
Hamilton, Jennie A; Wu, Qi; Yang, PingAr et al. (2018) Cutting Edge: Intracellular IFN-? and Distinct Type I IFN Expression Patterns in Circulating Systemic Lupus Erythematosus B Cells. J Immunol 201:2203-2208
Merlin, Jessica S; Long, Dustin; Becker, William C et al. (2018) Brief Report: The Association of Chronic Pain and Long-Term Opioid Therapy With HIV Treatment Outcomes. J Acquir Immune Defic Syndr 79:77-82
Yang, Zhenhua; Shah, Kushani; Busby, Theodore et al. (2018) Hijacking a key chromatin modulator creates epigenetic vulnerability for MYC-driven cancer. J Clin Invest 128:3605-3618
Stafman, Laura L; Mruthyunjayappa, Smitha; Waters, Alicia M et al. (2018) Targeting PIM kinase as a therapeutic strategy in human hepatoblastoma. Oncotarget 9:22665-22679
Barr, Fiona D; Ochsenbauer, Christina; Wira, Charles R et al. (2018) Neutrophil extracellular traps prevent HIV infection in the female genital tract. Mucosal Immunol 11:1420-1428
Nag, Mukta; De Paris, Kristina; E Fogle, Jonathan (2018) Epigenetic Modulation of CD8? T Cell Function in Lentivirus Infections: A Review. Viruses 10:
Williams, Adele P; Waters, Alicia M; Stewart, Jerry E et al. (2018) A novel retinoid X receptor agonist, UAB30, inhibits rhabdomyosarcoma cells in vitro. J Surg Res 228:54-62
Holdbrooks, Andrew T; Britain, Colleen M; Bellis, Susan L (2018) ST6Gal-I sialyltransferase promotes tumor necrosis factor (TNF)-mediated cancer cell survival via sialylation of the TNF receptor 1 (TNFR1) death receptor. J Biol Chem 293:1610-1622
Bengtson, Angela M; Pence, Brian W; Eaton, Ellen F et al. (2018) Patterns of efavirenz use as first-line antiretroviral therapy in the United States: 1999-2015. Antivir Ther 23:363-372
Dixit, Saurabh; Sahu, Rajnish; Verma, Richa et al. (2018) Caveolin-mediated endocytosis of the Chlamydia M278 outer membrane peptide encapsulated in poly(lactic acid)-Poly(ethylene glycol) nanoparticles by mouse primary dendritic cells enhances specific immune effectors mediated by MHC class II and CD4+ T cells. Biomaterials 159:130-145

Showing the most recent 10 out of 955 publications