The Physiology Core is a central component of the YCCMD and critical to the success of the Center. The Core is directed by Dr. Thomas Carpenter, and is comprised of three subunits. The first of these, the Histology and Histomorphometry subunit prepares undecalcified tissue sections and performs specialized staining of bone and histomorphpmetric analyses. The second subunit, Biochemical Markers of Bone Turnover offers assays for osteocalcin, bone specific alkaline phosphatase, tartrate resistant acid phosphatase, serum, P1NP, and the C-telopeptide of type 1 collagen (CTX) as a bone resorption marker. The third subunit, Bone Densitometry and Imaging offers pQCT and, in collaboration with Dr. is currently establishing a micro-computed tomographic (uCT) facility featuring a recently acquired Scanco 35 uCT scanner. These subunits, functioning as separate but interrelated components, work synergistically to provide a comprehensive approach to analyzing a wide range of animal models. The Physiology Core has been a focal point of entry for new and junior investigators in the field, and has greatly enhanced the productivity of Center members throughout the Medical School and in the larger University research community. Core utilization has included researchers from the Departments of Internal Medicine, Orthopaedics and Rehabilitation, Pediatrics, Surgery, Obstetrics and Gynecology, Genetics, Cell Biology, Immunobiology, Biology, Comparative Medicine, and Hematology. Our training efforts have had an even broader geographic reach. This overall structure has worked well and we will maintain the described organizational format for the next funding cycle. With increased demands for services and the invariable increase in operating expenses, we have had to meet certain fiscal challenges. Our cost recovery program has allowed us to operate with a balanced budget for 9 years. Moreover, with efficient management we have maintained a sufficiently modest fee structure as to limit rate increases, thereby minimizing the impact on junior and first time investigators.

Public Health Relevance

In sum, the combination of providing sophisticated technical expertise and state-of-the-art methodologies, in concert with the Core's training mission, has increased the productivity of established researchers, attracted new investigators to the field, and has increased the overall visibility of musculoskeletal research at Yale.

National Institute of Health (NIH)
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZAR1-CHW-G)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Yale University
New Haven
United States
Zip Code
McCarthy, Thomas L; Yun, Zhong; Madri, Joseph A et al. (2014) Stratified control of IGF-I expression by hypoxia and stress hormones in osteoblasts. Gene 539:141-51
Wang, Meina; VanHouten, Joshua N; Nasiri, Ali R et al. (2014) Periosteal PTHrP regulates cortical bone modeling during linear growth in mice. J Anat 225:71-82
Wang, Meina; Nasiri, Ali; VanHouten, Joshua N et al. (2014) The remarkable migration of the medial collateral ligament. J Anat 224:490-8
Scheller, Erica L; Troiano, Nancy; Vanhoutan, Joshua N et al. (2014) Use of osmium tetroxide staining with microcomputerized tomography to visualize and quantify bone marrow adipose tissue in vivo. Methods Enzymol 537:123-39
Mis, Emily K; Liem Jr, Karel F; Kong, Yong et al. (2014) Forward genetics defines Xylt1 as a key, conserved regulator of early chondrocyte maturation and skeletal length. Dev Biol 385:67-82
Juneja, Subhash C; Vonica, Alin; Zeiss, Caroline et al. (2014) Deletion of Mecom in mouse results in early-onset spinal deformity and osteopenia. Bone 60:148-61
Gao, Hui; Mejhert, Niklas; Fretz, Jackie A et al. (2014) Early B cell factor 1 regulates adipocyte morphology and lipolysis in white adipose tissue. Cell Metab 19:981-92
Yao, Chen; Yao, Gang-Qing; Sun, Ben-Hua et al. (2014) The transcription factor T-box 3 regulates colony-stimulating factor 1-dependent Jun dimerization protein 2 expression and plays an important role in osteoclastogenesis. J Biol Chem 289:6775-90
Gattu, Arijeet K; Birkenfeld, Andreas L; Iwakiri, Yasuko et al. (2014) Pigment epithelium-derived factor (PEDF) suppresses IL-1?-mediated c-Jun N-terminal kinase (JNK) activation to improve hepatocyte insulin signaling. Endocrinology 155:1373-85
Kacena, Melissa A; Gundberg, Caren M; Kacena 3rd, William J et al. (2013) The effects of GATA-1 and NF-E2 deficiency on bone biomechanical, biochemical, and mineral properties. J Cell Physiol 228:1594-600

Showing the most recent 10 out of 113 publications