The Comprehensive Flow Cytometry Core (CFCC) is directed by Dr. John D. Mountz with assistance of Co-Directors, Drs.Troy Randall and Olaf Kutsch. The goal of the CFCC is to enhance the productivity of the research base of the UAB Rheumatic Disease Core Center (RDCC) through state-of-the-art flow cytometry and cell separation technologies. To accomplish this, the Core provides the equipment, service and expertise necessary for the application of flow cytometry and related technologies to cell analyses and cell purification at a reasonable cost. These services play a key role in studies of disease pathogenesis and identification of potential therapeutic targets, as well as in analysis of determinants of disease susceptibility and drug responsiveness, and pre-clinical testing of potential therapeutic reagents.
Our Specific Aims are: 1 Service. To improve service by continued improvements of our equipment, through enhanced sophistication of our user base, optimal efficiency of sample analysis, rigorous quality control of all operations and maintenance of operator proficiency for technologically challenging applications. 2. Outreach &Education. To provide informal tutorials, formal courses, symposia, and web-based information with the goals of increasing our user base through enhanced awareness of flow cytometry and introducing established users to newer technologies and applications. 3. Development. To develop new applications in response to users'needs and to take full advantage of equipment capabilities, through discussions with users, participation in international flow cytometry meetings, and inclusion of knowledgeable core users on our Advisory Committee. To keep pace with research needs of the RDCC investigators, we have expanded the capacity of the CFCC and introduced new equipment and technologies. Continued development of innovative applications is enhanced by the depth of expertise at UAB and external collaborations. Education is accomplished through bi-weekly Individualized Design of Experiments &Analyses Sessions (IDEAs) in which the Director/Co-Directors interact with investigators to develop protocols and applications, including integration of flow cytometry aspects in the experimental design with other Cores, including AIIC and AGTC.

Public Health Relevance

The Comprehensive Flow Cytometry Core provides instrumentation and expertise to support fundamental mechanistic studies of rheumatic diseases and autoimmunity. Furthermore, the CFCC resources support the identification of new biomarkers for disease diagnosis and the development of novel treatments.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Center Core Grants (P30)
Project #
5P30AR048311-12
Application #
8536209
Study Section
Special Emphasis Panel (ZAR1-KM)
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
12
Fiscal Year
2013
Total Cost
$168,753
Indirect Cost
$54,011
Name
University of Alabama Birmingham
Department
Type
DUNS #
063690705
City
Birmingham
State
AL
Country
United States
Zip Code
35294
Pasek, Raymond C; Malarkey, Erik; Berbari, Nicolas F et al. (2016) Coiled-coil domain containing 42 (Ccdc42) is necessary for proper sperm development and male fertility in the mouse. Dev Biol 412:208-18
Holt, Leanne Melissa; Olsen, Michelle Lynne (2016) Novel Applications of Magnetic Cell Sorting to Analyze Cell-Type Specific Gene and Protein Expression in the Central Nervous System. PLoS One 11:e0150290
Zhao, Jian; Giles, Brendan M; Taylor, Rhonda L et al. (2016) Preferential association of a functional variant in complement receptor 2 with antibodies to double-stranded DNA. Ann Rheum Dis 75:242-52
Pegues, Melissa A; McWilliams, Ian L; Szalai, Alexander J (2016) C-reactive protein exacerbates renal ischemia-reperfusion injury: are myeloid-derived suppressor cells to blame? Am J Physiol Renal Physiol 311:F176-81
Sun, Jim; Schaaf, Kaitlyn; Duverger, Alexandra et al. (2016) Protein phosphatase, Mg2+/Mn2+-dependent 1A controls the innate antiviral and antibacterial response of macrophages during HIV-1 and Mycobacterium tuberculosis infection. Oncotarget 7:15394-409
Yang, Zhenhua; Shah, Kushani; Khodadadi-Jamayran, Alireza et al. (2016) Dpy30 is critical for maintaining the identity and function of adult hematopoietic stem cells. J Exp Med 213:2349-2364
Padgett, Lindsey E; Tse, Hubert M (2016) NADPH Oxidase-Derived Superoxide Provides a Third Signal for CD4 T Cell Effector Responses. J Immunol 197:1733-42
Hull, Travis D; Boddu, Ravindra; Guo, Lingling et al. (2016) Heme oxygenase-1 regulates mitochondrial quality control in the heart. JCI Insight 1:e85817
Jackson, Joshua D; Markert, James M; Li, Li et al. (2016) STAT1 and NF-κB Inhibitors Diminish Basal Interferon-Stimulated Gene Expression and Improve the Productive Infection of Oncolytic HSV in MPNST Cells. Mol Cancer Res 14:482-92
Schultz, Matthew J; Holdbrooks, Andrew T; Chakraborty, Asmi et al. (2016) The Tumor-Associated Glycosyltransferase ST6Gal-I Regulates Stem Cell Transcription Factors and Confers a Cancer Stem Cell Phenotype. Cancer Res 76:3978-88

Showing the most recent 10 out of 267 publications