Northwestern University (NU) is recognized for its strong interdisciplinary cutaneous biology research program. The SDRC, with its 73 members, encompassing 14 university departments and 7 divisions within the Department of Medicine, has played a major role in maintaining and expanding this research program. The goal of the Northwestern University SDRC has been and will continue to be the promotion of outstanding translational research in cutaneous biology, ultimately to improve patient care. To accomplish this goal, the SDRC has the following Cores: (i) Administration;(ii) Skin Tissue Engineering;(iii Morphology and Phenotyping;and (iv) DNA/RNA Delivery. The Administrative Core encourages collaboration among the 60 SDRC Bench Research members and the 13 Clinical Collaborator Associate members through its Enrichment Program. Within the Enrichment Program, the SDRC will continue to support the highly successful Pilot and Feasibility (P&F) Program, which has brought new members into the SDRC and opened novel areas of research in cutaneous biology. The Administrative Core will further expand its successful Minority and Gender Awareness Program, through the support of two new research areas focusing on understanding better the cutaneous differences in skin of color as well as gender. The Skin Tissue Engineering Core provides keratinocytes, including organotypic cultures, and will extend this service to offer fibroblasts, melanocytes, cells from patient lesional skin, and organotypic culture models of skin disease. The Morphology and Phenotyping Core offers a broad-based tissue bank, in addition to its morphogenetic processing services, laser capture micro-dissection capabilities, and assays to test penetration into human skin. The DNA/RNA Delivery Core generates lentiviral and retroviral constructs to overexpress or silence genes, and to express reporters in skin cells. All three Research Cores provide education through training and interpretation of results and have strong translational components. The SDRC has partnered with several NU Core facilities to provide users with opportunities to take their basic findings into a clinical setting, thus positioning itself to make important strides in understanding and treating diseases of the skin.

Public Health Relevance

The SDRC significantly strengthens and enhances the existing programs in cutaneous biology at Northwestern University by bringing new investigators into skin research and opening novel areas of investigation. The Administrative and Research Cores facilitate and foster cooperative interactions among many scientists at NU, which will translate into better health care for patients with skin diseases.

National Institute of Health (NIH)
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZAR1-KM (M1))
Program Officer
Baker, Carl
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Northwestern University at Chicago
Schools of Medicine
United States
Zip Code
Ziolo, Kevin J; Jeong, Hee-Gon; Kwak, Jayme S et al. (2014) Vibrio vulnificus biotype 3 multifunctional autoprocessing RTX toxin is an adenylate cyclase toxin essential for virulence in mice. Infect Immun 82:2148-57
Johnson, Jodi L; Koetsier, Jennifer L; Sirico, Anna et al. (2014) The desmosomal protein desmoglein 1 aids recovery of epidermal differentiation after acute UV light exposure. J Invest Dermatol 134:2154-62
Khare, Sonal; Ratsimandresy, Rojo A; de Almeida, LĂșcia et al. (2014) The PYRIN domain-only protein POP3 inhibits ALR inflammasomes and regulates responses to infection with DNA viruses. Nat Immunol 15:343-53
Werner, Michael E; Mitchell, Jennifer W; Putzbach, William et al. (2014) Radial intercalation is regulated by the Par complex and the microtubule-stabilizing protein CLAMP/Spef1. J Cell Biol 206:367-76
Bhattacharyya, Swati; Tamaki, Zenshiro; Wang, Wenxia et al. (2014) FibronectinEDA promotes chronic cutaneous fibrosis through Toll-like receptor signaling. Sci Transl Med 6:232ra50
Hattori, Yoshiaki; Falgout, Leo; Lee, Woosik et al. (2014) Multifunctional skin-like electronics for quantitative, clinical monitoring of cutaneous wound healing. Adv Healthc Mater 3:1597-607
Koetsier, Jennifer L; Amargo, Evangeline V; Todorovic, Viktor et al. (2014) Plakophilin 2 affects cell migration by modulating focal adhesion dynamics and integrin protein expression. J Invest Dermatol 134:112-22
Todorovic, Viktor; Koetsier, Jennifer L; Godsel, Lisa M et al. (2014) Plakophilin 3 mediates Rap1-dependent desmosome assembly and adherens junction maturation. Mol Biol Cell 25:3749-64
Heffern, Marie C; Velasco, Pauline T; Matosziuk, Lauren M et al. (2014) Modulation of amyloid-? aggregation by histidine-coordinating Cobalt(III) Schiff base complexes. Chembiochem 15:1584-9
Robinson, June K; Gaber, Rikki; Hultgren, Brittney et al. (2014) Skin self-examination education for early detection of melanoma: a randomized controlled trial of Internet, workbook, and in-person interventions. J Med Internet Res 16:e7

Showing the most recent 10 out of 38 publications