Northwestern University (NU) is recognized for its strong interdisciplinary cutaneous biology research program. The SDRC, with its 73 members, encompassing 14 university departments and 7 divisions within the Department of Medicine, has played a major role in maintaining and expanding this research program. The goal of the Northwestern University SDRC has been and will continue to be the promotion of outstanding translational research in cutaneous biology, ultimately to improve patient care. To accomplish this goal, the SDRC has the following Cores: (i) Administration;(ii) Skin Tissue Engineering;(iii Morphology and Phenotyping;and (iv) DNA/RNA Delivery. The Administrative Core encourages collaboration among the 60 SDRC Bench Research members and the 13 Clinical Collaborator Associate members through its Enrichment Program. Within the Enrichment Program, the SDRC will continue to support the highly successful Pilot and Feasibility (P&F) Program, which has brought new members into the SDRC and opened novel areas of research in cutaneous biology. The Administrative Core will further expand its successful Minority and Gender Awareness Program, through the support of two new research areas focusing on understanding better the cutaneous differences in skin of color as well as gender. The Skin Tissue Engineering Core provides keratinocytes, including organotypic cultures, and will extend this service to offer fibroblasts, melanocytes, cells from patient lesional skin, and organotypic culture models of skin disease. The Morphology and Phenotyping Core offers a broad-based tissue bank, in addition to its morphogenetic processing services, laser capture micro-dissection capabilities, and assays to test penetration into human skin. The DNA/RNA Delivery Core generates lentiviral and retroviral constructs to overexpress or silence genes, and to express reporters in skin cells. All three Research Cores provide education through training and interpretation of results and have strong translational components. The SDRC has partnered with several NU Core facilities to provide users with opportunities to take their basic findings into a clinical setting, thus positioning itself to make important strides in understanding and treating diseases of the skin.

Public Health Relevance

The SDRC significantly strengthens and enhances the existing programs in cutaneous biology at Northwestern University by bringing new investigators into skin research and opening novel areas of investigation. The Administrative and Research Cores facilitate and foster cooperative interactions among many scientists at NU, which will translate into better health care for patients with skin diseases.

National Institute of Health (NIH)
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZAR1-KM (M1))
Program Officer
Baker, Carl
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Northwestern University at Chicago
Schools of Medicine
United States
Zip Code
Sarkar, Mrinal K; Kaplan, Nihal; Tsoi, Lam C et al. (2017) Endogenous Glucocorticoid Deficiency in Psoriasis Promotes Inflammation and Abnormal Differentiation. J Invest Dermatol 137:1474-1483
Bagchi, Sreya; He, Ying; Zhang, Hong et al. (2017) CD1b-autoreactive T cells contribute to hyperlipidemia-induced skin inflammation in mice. J Clin Invest 127:2339-2352
Dam, Duncan Hieu M; Wang, Xiao-Qi; Sheu, Sarah et al. (2017) Ganglioside GM3 Mediates Glucose-Induced Suppression of IGF-1 Receptor-Rac1 Activation to Inhibit Keratinocyte Motility. J Invest Dermatol 137:440-448
Najor, Nicole Ann; Fitz, Gillian Nicole; Koetsier, Jennifer Leigh et al. (2017) Epidermal Growth Factor Receptor neddylation is regulated by a desmosomal-COP9 (Constitutive Photomorphogenesis 9) signalosome complex. Elife 6:
Park, Jong Kook; Peng, Han; Yang, Wending et al. (2017) miR-184 exhibits angiostatic properties via regulation of Akt and VEGF signaling pathways. FASEB J 31:256-265
Hamanaka, Robert B; Mutlu, Gökhan M (2017) PFKFB3, a Direct Target of p63, Is Required for Proliferation and Inhibits Differentiation in Epidermal Keratinocytes. J Invest Dermatol 137:1267-1276
Wood, Megan N; Ishiyama, Noboru; Singaram, Indira et al. (2017) ?-Catenin homodimers are recruited to phosphoinositide-activated membranes to promote adhesion. J Cell Biol 216:3767-3783
Ratsimandresy, Rojo A; Chu, Lan H; Khare, Sonal et al. (2017) The PYRIN domain-only protein POP2 inhibits inflammasome priming and activation. Nat Commun 8:15556
Perez White, Bethany E; Ventrella, Rosa; Kaplan, Nihal et al. (2017) EphA2 proteomics in human keratinocytes reveals a novel association with afadin and epidermal tight junctions. J Cell Sci 130:111-118
Park, Jong Kook; Peng, Han; Katsnelson, Julia et al. (2016) MicroRNAs-103/107 coordinately regulate macropinocytosis and autophagy. J Cell Biol 215:667-685

Showing the most recent 10 out of 92 publications