Washington University has a long record of excellence in musculoskeletal research and clinical care. Historically the base for the research efforts have been individual laboratories in the Departments of Medicine, Orthopaedic Surgery and Pathology. In recent years, ad hoc collaborations have developed between these groups and non-musculoskeletal investigators in Departments of Anatomy &Neurobiology, Biomedical Engineering, Cell Biology, Developmental Biology, Genetics and Pediatrics, thereby significantly expanding our biological skill set and vision. However, we have lacked a central mechanism to leverage these new collaborations efficiently into new research discoveries. With this broad, diverse research base, we propose to create the Washington University Core Center for Musculoskeletal Biology and Medicine (CCMBM). The CCMBM Research Base has 48 members who have over 21 million dollars of annual research support (direct costs). Seventeen of the members have NIAMS funding (21 research grants). The primary goals of the Center are to enhance the productivity of established musculoskeletal scientists, to support young investigators in our field and to facilitate collaboration between established skeletal scientists and those bringing non-traditional questions and strategies to our discipline. The major programmatic focus of the CCMBM will be to support and expedite the creation and analysis of animal models of relevance to musculoskeletal biology and disease. Three Research Cores are proposed: Musculoskeletal Structure and Strength (Core B), In Situ Molecular Analysis (Core C), and Mouse Genetic Models (Core D). Our basic and translational research efforts will be directed toward an understanding of musculoskeletal biology at the molecular, cellular and tissue levels with the goal that such studies will directly impact our understanding of the pathophysiology of osteoporosis, osteoarthritis, muscular dystrophy, osteochondrodysplasias as well as regeneration of bone, cartilage, tendon and muscle. Through the Administrative Core (Core A), the CCMBM will sponsor enrichment activities to promote the exchange of information, ideas and reagents between CCMBM members, and to engage non-members who are doing meritorious research of interest to the CCMBM membership. We will also implement a Pilot &Feasibility Grant Program to provide funding support to young investigators in our field as well as to established, non-musculoskeletal investigators who propose to apply their outside expertise to a problem in musculoskeletal biology or medicine.

Public Health Relevance

Musculoskeletal disorders such as osteoarthritis, osteoporosis and muscular dystropy are a main cause of pain and suffering leading to diminished quality and lost time from work. Our research uses animal models to understand the biological factors underlying musculoskeletal disorders. We use histology, imaging and mechanical testing techniques to assess the structure and strength of bone, tendon and muscle.

National Institute of Health (NIH)
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZAR1-CHW-G (M1))
Program Officer
Tyree, Bernadette
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Washington University
Schools of Medicine
Saint Louis
United States
Zip Code
Fontana, Francesca; Hickman-Brecks, Cynthia L; Salazar, Valerie S et al. (2017) N-cadherin Regulation of Bone Growth and Homeostasis Is Osteolineage Stage-Specific. J Bone Miner Res 32:1332-1342
Liu, Jennifer W; Lin, Kevin H; Weber, Christian et al. (2017) An In Vitro Organ Culture Model of the Murine Intervertebral Disc. J Vis Exp :
Liu, Xiaochen; McKenzie, Jennifer A; Maschhoff, Clayton W et al. (2017) Exogenous hedgehog antagonist delays but does not prevent fracture healing in young mice. Bone 103:241-251
Hibino, Itaru; Tang, Simon (2017) Differential Carbonyl Stress Expression in the Intervertebral Disc between Singular- and Persistent-Mechanical Injuries. Nagoya Gakuin Daigaku Ronshu Igaku Kenko Kagaku Supotsu Kagakuh 5:11-19
He, Guangxu; Shi, Yu; Lim, Joohyun et al. (2017) Differential involvement of Wnt signaling in Bmp regulation of cancellous versus periosteal bone growth. Bone Res 5:17016
Anderson, Britta A; McAlinden, Audrey (2017) miR-483 targets SMAD4 to suppress chondrogenic differentiation of human mesenchymal stem cells. J Orthop Res 35:2369-2377
Shi, Yu; He, Guangxu; Lee, Wen-Chih et al. (2017) Gli1 identifies osteogenic progenitors for bone formation and fracture repair. Nat Commun 8:2043
Mutneja, Anubha; Cossey, L Nicholas; Liapis, Helen et al. (2017) A rare case of renal thrombotic microangiopathy associated with Castleman's disease. BMC Nephrol 18:57
Kim, Yeawon; Park, Sun-Ji; Chen, Ying Maggie (2017) Mesencephalic astrocyte-derived neurotrophic factor (MANF), a new player in endoplasmic reticulum diseases: structure, biology, and therapeutic roles. Transl Res 188:1-9
Kim, Yeawon; Park, Sun-Ji; Manson, Scott R et al. (2017) Elevated urinary CRELD2 is associated with endoplasmic reticulum stress-mediated kidney disease. JCI Insight 2:

Showing the most recent 10 out of 279 publications