Mouse genetic models have been extensively utilized by CCBMB investigators and are central to research in musculoskeletal biology and medicine. The Animal Models Core aims to foster a state-of-the-art research environment for CCMBM researchers by supporting the optimization and implementation of new technologies, the generation of mouse genetic tools that will have wide use among CCBMB researchers, the production, preservation, and sharing of genetically altered mice in a timely and reliable manner, and the exploration of the zebrafish as a model for musculoskeletal research. To enhance the effective use of mouse and zebrafish model organisms for research in musculoskeletal biology, the Animal Models Core will facilitate the implementation of TALEN and CRISPR/Cas genomic editing technology. This technology will benefit CCBMB investigators by facilitating investigator-initiated development of mouse and zebrafish animal models, and by developing universal TALENs for targeting Cre recombinase, LacZ, and the ROSA26 locus, to allow efficient re-engineering of well-characterized mouse alleles. Establishing this genomic editing technology will benefit CCBMB members by enabling fast and cost-effective production of new mouse and zebrafish models and by allowing the genetic modification of well-characterized existing mouse lines that have well-defined temporal and spatial expression patterns. Additional aims of the Animal Models Core focus on consultation and education and the maintenance of a comprehensive database to foster sharing of animal models and genetic tools.

Public Health Relevance

Animal models provide essential tools for research in musculoskeletal biology. The zebrafish and mouse provide complementary organisms that together provide physiologically relevant models for musculoskeletal development and disease and allow the identification of novel gene functions through genetic screens. The Animal Models Core aims to facilitate and enhance the use of these model organisms for MRC investigators.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Center Core Grants (P30)
Project #
5P30AR057235-07
Application #
8832722
Study Section
Special Emphasis Panel (ZAR1)
Project Start
Project End
Budget Start
2015-04-01
Budget End
2016-03-31
Support Year
7
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
McKenzie, Jennifer A; Maschhoff, Clayton; Liu, Xiaochen et al. (2018) ACTIVATION OF HEDGEHOG SIGNALING BY SYSTEMIC AGONIST IMPROVES FRACTURE HEALING IN AGED MICE. J Orthop Res :
Craft, Clarissa S; Li, Ziru; MacDougald, Ormond A et al. (2018) Molecular differences between subtypes of bone marrow adipocytes. Curr Mol Biol Rep 4:16-23
Holguin, Nilsson; Silva, Matthew J (2018) In-Vivo Nucleus Pulposus-Specific Regulation of Adult Murine Intervertebral Disc Degeneration via Wnt/Beta-Catenin Signaling. Sci Rep 8:11191
Otaify, Ghada A; Whyte, Michael P; Gottesman, Gary S et al. (2018) Gnathodiaphyseal dysplasia: Severe atypical presentation with novel heterozygous mutation of the anoctamin gene (ANO5). Bone 107:161-171
Linderman, Stephen W; Golman, Mikhail; Gardner, Thomas R et al. (2018) Enhanced tendon-to-bone repair through adhesive films. Acta Biomater 70:165-176
Murali, Bhavna; Ren, Qihao; Luo, Xianmin et al. (2018) Inhibition of the Stromal p38MAPK/MK2 Pathway Limits Breast Cancer Metastases and Chemotherapy-Induced Bone Loss. Cancer Res 78:5618-5630
Patra, Debabrata; DeLassus, Elizabeth; Mueller, Jennifer et al. (2018) Site-1 protease regulates skeletal stem cell population and osteogenic differentiation in mice. Biol Open 7:
Killian, Megan L; Locke, Ryan C; James, Michael G et al. (2018) Novel model for the induction of postnatal murine hip deformity. J Orthop Res :
Shen, Hua; Jayaram, Rohith; Yoneda, Susumu et al. (2018) The effect of adipose-derived stem cell sheets and CTGF on early flexor tendon healing in a canine model. Sci Rep 8:11078
Williams, Matthew J; Sugatani, Toshifumi; Agapova, Olga A et al. (2018) The activin receptor is stimulated in the skeleton, vasculature, heart, and kidney during chronic kidney disease. Kidney Int 93:147-158

Showing the most recent 10 out of 335 publications