The High Throughput Cell Analysis Core is dedicated to the identification, functional and molecular characterization of muscle-derived cell populations of healthy and diseased adult skeletal muscle. This core includes prospective isolation of muscle-derived cell subpopulations by FACS (Muscle Sorting Service), a high throughput microscopy and screening of libraries of siRNAs, and microRNAs (mlRs) and chemical compounds (High Throughput Screening Service), and in vivo cell transplantation into mouse models of disease (Cell Transplantation Service). The flow cytometry, sorting, high throughput microscopy, chemical and functional genomics screening services are available in existing cores at SBMRI but not readily accessible to the non-SBMRI muscle community. This P30 will make these services available to the San Diego muscle research community. The High Throughput Cell Analysis Core will interface with the Phenotyping Core and the Imaging Core by assisting Center investigators with the appropriate isolation and characterization of muscle-derived cells from the mouse models or human tissues that are provided by the Center member. This core will make available to all Center investigators sophisticated flow-cytometry, high throughput imaging microscopy, and screening of noncoding RNAs (siRNA and mlRNA) and chemical compounds libraries. Moreover, the Core will also provide assistance and training for animal irradiation and cell transplantation. Additional services include single cell analysis and transplantation from Luciferase transgenic mice, enabling the monitoring the homing, proliferation and differentiation of transplanted cells in vivo.

Public Health Relevance

This Core will provide Center investigators with access to and training in isolation, functional analysis and characterization of muscle-derived cell populations sorted by a variety of high throughput analyses. The core will provide instruction on technology, data interpretation and troubleshooting of the proposed experiments. Overall, this Core will play an essential role in the understanding of the relative contribution of the different cell populations to skeletal muscle regeneration in physiological and pathological conditions.

National Institute of Health (NIH)
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZAR1-KM)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Diego
La Jolla
United States
Zip Code
Chapman, Mark A; Pichika, Rajeswari; Lieber, Richard L (2015) Collagen crosslinking does not dictate stiffness in a transgenic mouse model of skeletal muscle fibrosis. J Biomech 48:375-8
Gokhin, David S; Tierney, Matthew T; Sui, Zhenhua et al. (2014) Calpain-mediated proteolysis of tropomodulin isoforms leads to thin filament elongation in dystrophic skeletal muscle. Mol Biol Cell 25:852-65
Dayanidhi, Sudarshan; Lieber, Richard L (2014) Skeletal muscle satellite cells: mediators of muscle growth during development and implications for developmental disorders. Muscle Nerve 50:723-32
Tierney, Matthew Timothy; Aydogdu, Tufan; Sala, David et al. (2014) STAT3 signaling controls satellite cell expansion and skeletal muscle repair. Nat Med 20:1182-6
Chakkalakal, Joe V; Christensen, Josef; Xiang, Wanyi et al. (2014) Early forming label-retaining muscle stem cells require p27kip1 for maintenance of the primitive state. Development 141:1649-59
Tuttle, Lori J; Alperin, Marianna; Lieber, Richard L (2014) Post-mortem timing of skeletal muscle biochemical and mechanical degradation. J Biomech 47:1506-9
Wahlquist, Christine; Jeong, Dongtak; Rojas-Muñoz, Agustin et al. (2014) Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature 508:531-5
Chapman, Mark A; Zhang, Jianlin; Banerjee, Indroneal et al. (2014) Disruption of both nesprin 1 and desmin results in nuclear anchorage defects and fibrosis in skeletal muscle. Hum Mol Genet 23:5879-92
Albini, Sonia; Puri, Pier Lorenzo (2014) Generation of myospheres from hESCs by epigenetic reprogramming. J Vis Exp :e51243
Saccone, Valentina; Consalvi, Silvia; Giordani, Lorenzo et al. (2014) HDAC-regulated myomiRs control BAF60 variant exchange and direct the functional phenotype of fibro-adipogenic progenitors in dystrophic muscles. Genes Dev 28:841-57

Showing the most recent 10 out of 23 publications