The goal of the Musculoskeletal Imaging and Image Processing Research (MQIR) Core is to provide customized image acquisition, reconstruction and quantitative analysis for pre-clinical (tissue samples and animal models), and human quantitative imaging in musculoskeletal diseases.The MQIR Core has the following aims as part of its contribution to the overall mission of the CCMBM.
Specific Aim I : To provide quantitative magnetic resonance imaging sequences, computed tomography (CT) and positron emission tomography (PET) methods for pre-clinical and human musculoskeletal tissues.
Specific Aim II : To develop novel image grading and quantitative analysis: To provide templates, training, and implement robust measures for clinical grading of radiographs, CT and MR images, software packages for post-processing, visualization and quantitative analysis of images.
Specific Aim III : To provide interpretation of imaging data and assess links to biochemical, histological, and biomechanical measures. Develop and maintain databases for proposed projects that record parameters that are extracted from single and serial imaging examinations and the relevant clinical or experimental endpoints.
Specific Aim I V: We will provide a web portal, examples of previous studies that have used imaging endpoints and detailed descriptions of clinical and research imaging services will be represented on the web portal. On-line requests from new users for research collaboration and service will be reviewed by the staff, and based on the studies, initial consultation with appropriate individuals will be set up. Post-processing and imaging informatics will be provided to assist researchers design studies and apply for their Pilot and Feasibility grants.
Specific Aim V : We will also perform proactive outreach to attract potential new users, participate in CCMBM seminar activities to provide imaging seminars and workshops to introduce new imaging, image processing, to the Core community.

Public Health Relevance

The Core will assist researchers o link non-invasive imaging to study diseases such as osteoarthritis, sports related injuries, osteoporosis and muscuo-skeletal degenration. It will enable us to understand the musculoskeletal system in health, aging, and degeneration.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Center Core Grants (P30)
Project #
1P30AR066262-01
Application #
8708435
Study Section
Special Emphasis Panel (ZAR1-XZ (M1))
Project Start
2014-07-01
Project End
2019-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
1
Fiscal Year
2014
Total Cost
$214,941
Indirect Cost
$89,170
Name
University of California San Francisco
Department
Type
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94118
Wang, Zili; Feeley, Brian T; Kim, Hubert T et al. (2018) Reversal of Fatty Infiltration After Suprascapular Nerve Compression Release Is Dependent on UCP1 Expression in Mice. Clin Orthop Relat Res 476:1665-1679
Tamplen, Matthew; Fowler, Tristan; Markey, Jeffery et al. (2018) Treatment with anti-Sclerostin antibody to stimulate mandibular bone formation. Head Neck 40:1453-1460
Berg-Johansen, Britta; Fields, Aaron J; Liebenberg, Ellen C et al. (2018) Structure-function relationships at the human spinal disc-vertebra interface. J Orthop Res 36:192-201
Bragdon, Beth C; Bahney, Chelsea S (2018) Origin of Reparative Stem Cells in Fracture Healing. Curr Osteoporos Rep 16:490-503
Acevedo, Claire; Sylvia, Meghan; Schaible, Eric et al. (2018) Contributions of Material Properties and Structure to Increased Bone Fragility for a Given Bone Mass in the UCD-T2DM Rat Model of Type 2 Diabetes. J Bone Miner Res 33:1066-1075
Schafer, Anne L; Kazakia, Galateia J; Vittinghoff, Eric et al. (2018) Effects of Gastric Bypass Surgery on Bone Mass and Microarchitecture Occur Early and Particularly Impact Postmenopausal Women. J Bone Miner Res 33:975-986
Dudli, Stefan; Miller, S; Demir-Deviren, S et al. (2018) Inflammatory response of disc cells against Propionibacterium acnes depends on the presence of lumbar Modic changes. Eur Spine J 27:1013-1020
Amano, Keiko; Huebner, Janet L; Stabler, Thomas V et al. (2018) Synovial Fluid Profile at the Time of Anterior Cruciate Ligament Reconstruction and Its Association With Cartilage Matrix Composition 3 Years After Surgery. Am J Sports Med 46:890-899
Kazakia, Galateia J; Carballido-Gamio, Julio; Lai, Andrew et al. (2018) Trabecular bone microstructure is impaired in the proximal femur of human immunodeficiency virus-infected men with normal bone mineral density. Quant Imaging Med Surg 8:5-13
Magnitsky, Sergey; Dudli, Stefan; Tang, Xinyan et al. (2018) Quantification of Propionic Acid in the Bovine Spinal Disk After Infection of the Tissue With Propionibacteria acnes Bacteria. Spine (Phila Pa 1976) 43:E634-E638

Showing the most recent 10 out of 54 publications