The Cytogenefics Core has been approved as an established Shared Resource of DF/HCC since it's founding. Charies Lee has directed the facility since 2006, after serving as its Assistant Director for six years. Cytogenetic studies can provide insight into regions of the genome that are pathogenetic in various neoplasms leading to an understanding ofthe molecular pathways participating in the biology of cancer. An invaluable function of the Cytogenetics Core is access to consultation for experimental design and data interpretation with the Core Directors. Consultation provides the investigator with guidance and advice regarding the best approach for the goal(s) of a specific study. Services of the Core are primarily focused on human and mouse cytogenetics and include: 1) conventional karyotyping of fissue specimens and cell lines, 2) fluorescence in situ hybridization (FISH) for metaphase and interphase preparations, and 3) comparative genomic hybridization (CGH) on microarrays. Director: Charies Lee, PhD(MWH) Category: 1.15 (Cytogenetics) Management: Joint (Cancer Center and Institutional).

Public Health Relevance

The mission of the Cytogenetics Core is to provide state-of-the-art cytogenetics services to DF/HCC scientists to facilitate investigations of the pathogenesis and pathobiology of neoplasia. Cytogenetic studies may also be important in establishing a diagnosis for correlation with clinical outcome. Cytogenetics is a fundamental adjunct to a variety of investigations underway, including basic and translational research.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Dana-Farber Cancer Institute
United States
Zip Code
Chen, Yi-Bin; Batchelor, Tracy; Li, Shuli et al. (2015) Phase 2 trial of high-dose rituximab with high-dose cytarabine mobilization therapy and high-dose thiotepa, busulfan, and cyclophosphamide autologous stem cell transplantation in patients with central nervous system involvement by non-Hodgkin lymphoma. Cancer 121:226-33
Waldron, Levi; Haibe-Kains, Benjamin; Culhane, Aedín C et al. (2014) Comparative meta-analysis of prognostic gene signatures for late-stage ovarian cancer. J Natl Cancer Inst 106:
Yilmazel, Bahar; Hu, Yanhui; Sigoillot, Frederic et al. (2014) Online GESS: prediction of miRNA-like off-target effects in large-scale RNAi screen data by seed region analysis. BMC Bioinformatics 15:192
Mazzola, Emanuele; Chipman, Jonathan; Cheng, Su-Chun et al. (2014) Recent BRCAPRO upgrades significantly improve calibration. Cancer Epidemiol Biomarkers Prev 23:1689-95
Zhao, Sihai Dave; Parmigiani, Giovanni; Huttenhower, Curtis et al. (2014) Más-o-menos: a simple sign averaging method for discrimination in genomic data analysis. Bioinformatics 30:3062-9
Parkhitko, Andrey A; Priolo, Carmen; Coloff, Jonathan L et al. (2014) Autophagy-dependent metabolic reprogramming sensitizes TSC2-deficient cells to the antimetabolite 6-aminonicotinamide. Mol Cancer Res 12:48-57
Cheng, Long; Desai, Jigar; Miranda, Carlos J et al. (2014) Human CFEOM1 mutations attenuate KIF21A autoinhibition and cause oculomotor axon stalling. Neuron 82:334-49
Akbay, Esra A; Moslehi, Javid; Christensen, Camilla L et al. (2014) D-2-hydroxyglutarate produced by mutant IDH2 causes cardiomyopathy and neurodegeneration in mice. Genes Dev 28:479-90
Brunner, Andrew M; Blonquist, Traci M; Sadrzadeh, Hossein et al. (2014) Population-based disparities in survival among patients with core-binding factor acute myeloid leukemia: a SEER database analysis. Leuk Res 38:773-80
Karamichos, D; Hutcheon, A E K; Rich, C B et al. (2014) In vitro model suggests oxidative stress involved in keratoconus disease. Sci Rep 4:4608

Showing the most recent 10 out of 177 publications