OF SHARED RESOURCE Since the inception of the Sidney Kimmel Comprehensive Cancer Center (SKCCC) Cell Imaging Core Facility in September of 1999, its mission has been to provide state-of-the-art cell imaging technologies to SKCCC members. Services include light and fluorescence microscopy, stereo and confocal microscopy, infrared imaging, time lapse, and laser microdissection. Images can be acquired using a variety of video and CCD cameras, and then analyzed and manipulated with cutting edge image analysis software programs. All scientists have the opportunity for consultation prior to and during their experiments. Users receive technical support by the Core personnel and detailed instruction in the use of all Core equipment. The Core manager routinely monitors the performance of the facility's equipment and regularly receives updated technical training from manufacturers in order to meet the constantly evolving needs of the SKCCC membership. In 2010, 53 different groups led by Principal Investigators from all Programs of the Center have benefited from these Core services. Lay: The Cell Imaging Core provides Cancer Center investigators with supported access to equipment that allows the visualization and imaging of cells and tissues in a wide variety of samples. SKCCC Managed Shared Resource Current Grant Year Reporting Period: January 1, 2010 to December 31, 2010.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA006973-51
Application #
8660999
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
51
Fiscal Year
2014
Total Cost
$112,648
Indirect Cost
$43,254
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Zeidner, Joshua F; Zahurak, Marianna; Rosner, Gary L et al. (2015) The evolution of treatment strategies for patients with chronic myeloid leukemia relapsing after allogeneic bone marrow transplant: can tyrosine kinase inhibitors replace donor lymphocyte infusions? Leuk Lymphoma 56:128-34
Penet, Marie-France; Shah, Tariq; Bharti, Santosh et al. (2015) Metabolic imaging of pancreatic ductal adenocarcinoma detects altered choline metabolism. Clin Cancer Res 21:386-95
Sharabi, Andrew B; Nirschl, Christopher J; Kochel, Christina M et al. (2015) Stereotactic Radiation Therapy Augments Antigen-Specific PD-1-Mediated Antitumor Immune Responses via Cross-Presentation of Tumor Antigen. Cancer Immunol Res 3:345-55
Peltonen, Karita; Colis, Laureen; Liu, Hester et al. (2014) A targeting modality for destruction of RNA polymerase I that possesses anticancer activity. Cancer Cell 25:77-90
DeZern, Amy E; Guinan, Eva C (2014) Aplastic anemia in adolescents and young adults. Acta Haematol 132:331-9
Paller, Channing J; Wissing, Michel D; Mendonca, Janet et al. (2014) Combining the pan-aurora kinase inhibitor AMG 900 with histone deacetylase inhibitors enhances antitumor activity in prostate cancer. Cancer Med 3:1322-35
Maldonado, Leonel; Teague, Jessica E; Morrow, Matthew P et al. (2014) Intramuscular therapeutic vaccination targeting HPV16 induces T cell responses that localize in mucosal lesions. Sci Transl Med 6:221ra13
Schweizer, Michael T; Antonarakis, Emmanuel S (2014) Chemotherapy and its evolving role in the management of advanced prostate cancer. Asian J Androl 16:334-40
Huang, Peng; Ou, Ai-hua; Piantadosi, Steven et al. (2014) Formulating appropriate statistical hypotheses for treatment comparison in clinical trial design and analysis. Contemp Clin Trials 39:294-302
Bhatnagar, Akrita; Wang, Yuchuan; Mease, Ronnie C et al. (2014) AEG-1 promoter-mediated imaging of prostate cancer. Cancer Res 74:5772-81

Showing the most recent 10 out of 357 publications