The purpose of the Organic Synthesis Core Facility (OSCF) is to provide MSKCC investigators with a fully equipped facility complete with chemistry instrumentation, GMP infrastructure, and staff with the ability to interact with non-chemists as well as chemists, in order to carry out the requested chemical synthesis and consultation. OSCF also assists investigators with pre-clinical and clinical projects. Services are focused on the following: The chemical synthesis of compounds which are not readily available. This is accomplished using established synthetic protocols or by developing new synthetic methodologies. The synthesis of assay development tools and reagents: a) fluorescently labeled compounds, b) affinity labeled compounds, and c) cross linker-tethered molecules. Cold-labeled (13C, 2H, 15N) and radio-labeled (3H, 14C, 1251, 32P, ...etc.) compounds and precursors for preclinical and clinical pharmacological studies which cannot be addressed by the shared Cyclotron- Radiochemistry Core facility. To perform large-scale -cGMP or non-cGMP- chemical syntheses of compounds with demonstrated activity in primary bioassays for preclinical, phase I and II clinical studies (i.e. Le y, Globo H, which are penta- and hexa-carbohydrate antigen vaccine constructs, Cur-61414, peptidyl-Luciferin enzyme activity beacons, and Marimastat) in order to provide sufficient quantities for continued testing. The synthesis of modified and unmodified compounds in amounts that permit their availability for in vitro and in vivo assays and for secondary assays. For example, modifications are introduced to improve solubility, affinity, and specificity. Design, synthesis, and generation of libraries of structurally related compounds based on confirmed hits; library optimization through structure-activity relationships (SAR) identified in a pharmacophore using directed library synthesis and structure-guided design in order to enhance targeting, specificity, and bioavailability while minimizing toxicity.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Sloan-Kettering Institute for Cancer Research
New York
United States
Zip Code
Orlow, I; Satagopan, J M; Berwick, M et al. (2015) Genetic factors associated with naevus count and dermoscopic patterns: preliminary results from the Study of Nevi in Children (SONIC). Br J Dermatol 172:1081-9
Carey, Bryce W; Finley, Lydia W S; Cross, Justin R et al. (2015) Intracellular ?-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518:413-6
Mosher, C E; Given, B A; Ostroff, J S (2015) Barriers to mental health service use among distressed family caregivers of lung cancer patients. Eur J Cancer Care (Engl) 24:50-9
Navi, Babak B; Reiner, Anne S; Kamel, Hooman et al. (2015) Association between incident cancer and subsequent stroke. Ann Neurol 77:291-300
Xu, Zhe; Wu, Chaochao; Xie, Fang et al. (2015) Comprehensive quantitative analysis of ovarian and breast cancer tumor peptidomes. J Proteome Res 14:422-33
Xu, Hong; Cheng, Ming; Guo, Hongfen et al. (2015) Retargeting T cells to GD2 pentasaccharide on human tumors using Bispecific humanized antibody. Cancer Immunol Res 3:266-77
Gondo, Tatsuo; Poon, Bing Ying; Matsumoto, Kazuhiro et al. (2015) Clinical role of pathological downgrading after radical prostatectomy in patients with biopsy confirmed Gleason score 3 + 4 prostate cancer. BJU Int 115:81-6
Ripley, R Taylor; McMillan, Robert R; Sima, Camelia S et al. (2014) Second primary lung cancers: smokers versus nonsmokers after resection of stage I lung adenocarcinoma. Ann Thorac Surg 98:968-74
Ye, Jiangbin; Fan, Jing; Venneti, Sriram et al. (2014) Serine catabolism regulates mitochondrial redox control during hypoxia. Cancer Discov 4:1406-17
Lu, Zhigang; Xu, Jin; Xu, Mingming et al. (2014) Morphine regulates expression of *-opioid receptor MOR-1A, an intron-retention carboxyl terminal splice variant of the *-opioid receptor (OPRM1) gene via miR-103/miR-107. Mol Pharmacol 85:368-80

Showing the most recent 10 out of 836 publications