The primary goal of the X-ray Crystallography Core Facility is to provide access to state-of-the-art hardware, software and expertise to Cancer Center laboratories that use X-ray crystallography as a tool to address questions in their research programs. The Core provides and maintains In-house equipment and computational resources for data collection, processing and structure determination, implements a wide range of crystallographic and structure analysis software packages, participates in multi-institutional consortia for long-term regular access to synchrotron beamlines, and provides training and technical assistance to users of both the in-house and remote facilities. In addition, the Core Head collaborates with non-structural MSKCC groups on macromolecular crystallization and structure-determination projects, and also provides modeling expertise and guidance to those laboratories that can benefit from the use of available structures in the design and interpretation of experiments. Understanding the biological processes involved in tumorigenesis has increasingly benefitted from structural investigations that provide key functional and mechanistic Insights, as well as atomic-level details important for drug discovery. Many of the questions require the structure determination of large proteins, assemblies and macromolecular machines. Advances in protein expression technologies and nano-liter crystallization robots are making it possible to obtain hitherto inaccessible crystals. However, crystals of such complexes often present major experimental challenges due to small crystal size, large unit cells, poor order and limited diffraction. The X-ray Core alms to help address these limitations for MSKCC investigators by providing the latest generation in-house X-ray diffraction systems, by testing and implementing new methods, tools and software and disseminating the latest improvements, and by participating in multi-institutional consortia that not only build and operate synchrotron beamlines, but also carry out technology research and development that push the envelope of beamline capabilities. The X-Ray Crystallography Core has supported 8 investigators in the past year. During the past grant period the Core has contributed to 115 publications of researchers from 3 programs.

Public Health Relevance

Understanding the biological processes involved in tumorigenesis requires the understanding of the underlying structures of relevant proteins, genes and enzymes. The X-Ray Crystallography core provides services to MSKCC investigators interested in structure-function determinations.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA008748-48
Application #
8933521
Study Section
Subcommittee G - Education (NCI)
Program Officer
Shafik, Hasnaa
Project Start
2014-01-01
Project End
2018-12-31
Budget Start
2014-01-01
Budget End
2014-12-31
Support Year
48
Fiscal Year
2014
Total Cost
$271,886
Indirect Cost
$118,883
Name
Sloan-Kettering Institute for Cancer Research
Department
Type
DUNS #
064931884
City
New York
State
NY
Country
United States
Zip Code
10065
Basaraba, Cale N; Westhoff, Carolyn L; Pike, Malcolm C et al. (2017) Estimating systemic exposure to levonorgestrel from an oral contraceptive. Contraception 95:398-404
Hernandez, Jonathan M; Beylergil, Volkan; Goldman, Debra A et al. (2017) Post-Treatment/Pre-operative PET Response Is Not an Independent Predictor of Outcomes for Patients With Gastric and GEJ Adenocarcinoma. Ann Surg :
Argani, Pedram; Kao, Yu-Chien; Zhang, Lei et al. (2017) Primary Renal Sarcomas With BCOR-CCNB3 Gene Fusion: A Report of 2 Cases Showing Histologic Overlap With Clear Cell Sarcoma of Kidney, Suggesting Further Link Between BCOR-related Sarcomas of the Kidney and Soft Tissues. Am J Surg Pathol 41:1702-1712
Moore, Kathleen N; Martin, Lainie P; O'Malley, David M et al. (2017) Safety and Activity of Mirvetuximab Soravtansine (IMGN853), a Folate Receptor Alpha-Targeting Antibody-Drug Conjugate, in Platinum-Resistant Ovarian, Fallopian Tube, or Primary Peritoneal Cancer: A Phase I Expansion Study. J Clin Oncol 35:1112-1118
Lee, Ser Yee; Goh, Brian K P; Sadot, Eran et al. (2017) Surgical Strategy and Outcomes in Duodenal Gastrointestinal Stromal Tumor. Ann Surg Oncol 24:202-210
Hyman, David M; Taylor, Barry S; Baselga, José (2017) Implementing Genome-Driven Oncology. Cell 168:584-599
Li, Gang G; Somwar, Romel; Joseph, James et al. (2017) Antitumor Activity of RXDX-105 in Multiple Cancer Types with RET Rearrangements or Mutations. Clin Cancer Res 23:2981-2990
Bhagat, Tushar D; Zou, Yiyu; Huang, Shizheng et al. (2017) Notch Pathway Is Activated via Genetic and Epigenetic Alterations and Is a Therapeutic Target in Clear Cell Renal Cancer. J Biol Chem 292:837-846
Prieto-Granada, Carlos N; Zhang, Lei; Antonescu, Cristina R et al. (2017) Primary cutaneous adenoid cystic carcinoma with MYB aberrations: report of three cases and comprehensive review of the literature. J Cutan Pathol 44:201-209
He, Mu; Agbu, Stephanie; Anderson, Kathryn V (2017) Microtubule Motors Drive Hedgehog Signaling in Primary Cilia. Trends Cell Biol 27:110-125

Showing the most recent 10 out of 7561 publications