The Animal Imaging Core provides a wide array of non-invasive, high resolution quantitative imaging-based capabilities for metabolic and genetic characterization of tumors and their microenvironment. Among the critical scientific applications of small-animal imaging by MSKCC investigators are: phenotypic screening of tumor incidence, progression and therapy-induced regression in xenograft models and transgenic/knock-out models; assessment of trafficking of cancer cells, stem cells, and immune effector cells in vivo; evaluation of trans-gene expression, development, testing, and validation of targeted therapies (i.e. pharmacodynamics); and detection and localization of tumor hypoxia and re-oxygenation. These capabilities are broadly applicable to the fundamental mission of the Center in areas such as molecular imaging, assessment of therapeutic response, and drug development. The services provided by the Animal Imaging Core has supported the research of 65 investigators in the past year. During the past grant period the work of the Core has contributed to 370 publications of researchers from 9 research programs. As part of a major expansion and modernization of MSKCC's infrastructure, the Imaging Core has been consolidated and re-located to the Zuckerman Research Center's vivarium. This area provides enhanced biosecurity and functionality and houses the R4 and Focus 120 microPET, ivis 100 opfical imaging system, microCATII, microCT, NanoSPECT/CT Plus, SPECT-CT, Maestro, FMT 2500 near-Infrared fluorescence tomography system, and Vevo 2100 ultrasound system. The existing Ivis 100 optical imaging system remains at the Rockefeller Research Laboratory, supporting investigators In that building. A new high precision microirradiator, X-RAD, for rodent tumors and other structures was installed in 2012. The Core's 4.7T and 7.0T Brucker USR systems have also been moved to the Vivarium. The Core has provided critical support for the development and characterization of mouse models for human cancer. For example, models for glioma driven by PDGF-B signaling and anaplastic thyroid tumors driven by inducible mutant BRAF have been extensively characterized and examined for therapeutic responses using the imaging resources of the Core.

Public Health Relevance

The Animal Imaging Core Provides non-invasive, high resolution quantitative imaging-based capabilities for metabolic and genetic characterization of tumors and their microenvironment. These capabilities which are broadly applicable to the fundamental mission of the Center in such diverse and important space areas as molecular imaging, assessment of treatment response, and drug development.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA008748-52
Application #
9406247
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2018-01-01
Budget End
2018-12-31
Support Year
52
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Sloan-Kettering Institute for Cancer Research
Department
Type
DUNS #
064931884
City
New York
State
NY
Country
United States
Zip Code
10065
Kavaler, Joshua; Duan, Hong; Aradhya, Rajaguru et al. (2018) miRNA suppression of a Notch repressor directs non-neuronal fate in Drosophila mechanosensory organs. J Cell Biol 217:571-583
Bosse, Tjalling; Nout, Remi A; McAlpine, Jessica N et al. (2018) Molecular Classification of Grade 3 Endometrioid Endometrial Cancers Identifies Distinct Prognostic Subgroups. Am J Surg Pathol 42:561-568
Hellmann, Matthew D; Nathanson, Tavi; Rizvi, Hira et al. (2018) Genomic Features of Response to Combination Immunotherapy in Patients with Advanced Non-Small-Cell Lung Cancer. Cancer Cell 33:843-852.e4
Scordo, Michael; Morjaria, Sejal M; Littmann, Eric R et al. (2018) Distinctive Infectious Complications in Patients with Central Nervous System Lymphoma Undergoing Thiotepa, Busulfan, and Cyclophosphamide-conditioned Autologous Stem Cell Transplantation. Biol Blood Marrow Transplant 24:1914-1919
Byron, Sara A; Tran, Nhan L; Halperin, Rebecca F et al. (2018) Prospective Feasibility Trial for Genomics-Informed Treatment in Recurrent and Progressive Glioblastoma. Clin Cancer Res 24:295-305
Zarnegar, Sara; Durham, Benjamin H; Khattar, Pallavi et al. (2018) Novel activating BRAF fusion identifies a recurrent alternative mechanism for ERK activation in pediatric Langerhans cell histiocytosis. Pediatr Blood Cancer 65:
Francis, Jasmine H; Slakter, Jason S; Abramson, David H et al. (2018) Treatment of juxtapapillary hemangioblastoma by intra-arterial (ophthalmic artery) chemotherapy with bevacizumab. Am J Ophthalmol Case Rep 11:49-51
Lee, Stanley Chun-Wei; North, Khrystyna; Kim, Eunhee et al. (2018) Synthetic Lethal and Convergent Biological Effects of Cancer-Associated Spliceosomal Gene Mutations. Cancer Cell 34:225-241.e8
Motzer, Robert J; Escudier, Bernard; Powles, Thomas et al. (2018) Long-term follow-up of overall survival for cabozantinib versus everolimus in advanced renal cell carcinoma. Br J Cancer 118:1176-1178
Giancipoli, Romina Grazia; Monti, Serena; Basturk, Olca et al. (2018) Complete metabolic response to therapy of hepatic epithelioid hemangioendothelioma evaluated with 18F-fluorodeoxyglucose positron emission tomography/contrast-enhanced computed tomography: A CARE case report. Medicine (Baltimore) 97:e12795

Showing the most recent 10 out of 8799 publications