The Cancer Center strategic planning process identified the recruitment of new faculty as the most important priority for the past funding period, and it remains the most important priority for the proposed future funding period. Accordingly Cancer Center development funds have been used to support 11 new investigators, while Wistar Institute funds have underwritten pilot projects and bridged investigators who have developed research funding shortfalls due to delays in getting grants renewed. Over the past funding cycle, developmental funds have been used to support part of the direct research costs of new recruits for up to three years following their arrival. We have used $1,508,942 in developmental funds and these investigators are well on their way to establishing independent research programs. They have received funding for 14 NIH or Department of Defense grants, 25 foundation grants, and three American Cancer Society grants, among a total of almost 50 total awards, amounting to $18,266,554 in total extramural grant dollars. The Cancer Center has been able to make progress in achieving its strategic goals in the past funding period because of developmental funds provided by both the Institute and the CCSG.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Wistar Institute
United States
Zip Code
Qin, Jie; Rajaratnam, Rajathees; Feng, Li et al. (2015) Development of organometallic S6K1 inhibitors. J Med Chem 58:305-14
Tomescu, Costin; Seaton, Kelly E; Smith, Peter et al. (2015) Innate activation of MDC and NK cells in high-risk HIV-1-exposed seronegative IV-drug users who share needles when compared with low-risk nonsharing IV-drug user controls. J Acquir Immune Defic Syndr 68:264-73
Gekonge, Bethsebah; Bardin, Matthew C; Montaner, Luis J (2015) Short communication: Nitazoxanide inhibits HIV viral replication in monocyte-derived macrophages. AIDS Res Hum Retroviruses 31:237-41
Webster, Marie R; Xu, Mai; Kinzler, Kathryn A et al. (2015) Wnt5A promotes an adaptive, senescent-like stress response, while continuing to drive invasion in melanoma cells. Pigment Cell Melanoma Res 28:184-95
Zhang, Xuhui; Akech, Jacqueline; Browne, Gillian et al. (2015) Runx2-Smad signaling impacts the progression of tumor-induced bone disease. Int J Cancer 136:1321-32
Kung, Che-Pei; Khaku, Sakina; Jennis, Matthew et al. (2015) Identification of TRIML2, a novel p53 target, that enhances p53 SUMOylation and regulates the transactivation of proapoptotic genes. Mol Cancer Res 13:250-62
Gumireddy, Kiranmai; Li, Anping; Kossenkov, Andrew V et al. (2014) ID1 promotes breast cancer metastasis by S100A9 regulation. Mol Cancer Res 12:1334-43
Wolf, Amaya I; Strauman, Maura C; Mozdzanowska, Krystyna et al. (2014) Pneumolysin expression by streptococcus pneumoniae protects colonized mice from influenza virus-induced disease. Virology 462-463:254-65
Newhart, Alyshia; Janicki, Susan M (2014) Seeing is believing: visualizing transcriptional dynamics in single cells. J Cell Physiol 229:259-65
Budina-Kolomets, Anna; Balaburski, Gregor M; Bondar, Anastasia et al. (2014) Comparison of the activity of three different HSP70 inhibitors on apoptosis, cell cycle arrest, autophagy inhibition, and HSP90 inhibition. Cancer Biol Ther 15:194-9

Showing the most recent 10 out of 182 publications