The Bioinformatics Facility provides Cancer Center investigators with database management, software applications support, and expertise in statistical analyses and computational modeling of biomedical research data. In response to the growing informatics needs of funded Cancer Center researchers, the Bioinformatics Facility was established in 2001 with a combination of Cancer Center developmental funds and institutional support. The Cancer Center has made major investments to increase Bioinformatics facility space, instrumentation, and personnel over the past funding period. Under the direction of Dr. Ramana Davuluri, Director of Computational Biology, the Bioinformatics Facility has recently grown to consist of faculty, programmers, and statistical specialists from the Center for Systems and Computational Biology. Functions of the Facility reflect the research requirements of the three Cancer Center programs and are broadly divided into three areas: (i) data-management;(ii) statistical analyses and computational modeling; and (iii) advanced bioinformatics tools for integrative cancer biology. Specific services of the Bioinformatics Facility are to: 1) provide computational support for use of database software and bioinformatics tools;2) provide consulting support regarding statistical design and data analyses for high-throughput experiments;3) provide shared archives for high throughput molecular (both microarray and sequencing) data, tissue related data, image data, and pharmacodynamics data (extended and new service);and 4) adapt and implement cohesive analysis and data mining tools that allow for integration and cross-validation of the comprehensive molecular data used in integrative cancer biology research (new service in 2008). The Facility has placed a high priority on integrating cancer research information representing a variety of data types, including clinical patient data, molecular data from microarrays, massive-parallel sequencers (e.g. Illumina [Solexa] Genome Analyzer) and RT-PCR, and image data from digitized microscopy slides. Data security is a primary focus of the Bioinformatics Facility in designing and implementing software systems. The Facility also provides computational bioinformatics support to assist in the analysis of genomic, molecular, and proteomic data using commercial and locally-developed software packages. Most recently, the facility has been re-located into newly renovated space (2,006 sq. ft.), providing a state-ofthe- art server room and expanded office and conference room space.

Public Health Relevance

Modern Cancer research creates large amount of data, much in digital forms. These data need to be managed, interpreted, and stored by qualified professionals who have an understanding of biology and computer sciences as well as adequate modern resources to carry out these functions.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Wistar Institute
United States
Zip Code
Qin, Jie; Rajaratnam, Rajathees; Feng, Li et al. (2015) Development of organometallic S6K1 inhibitors. J Med Chem 58:305-14
Tomescu, Costin; Seaton, Kelly E; Smith, Peter et al. (2015) Innate activation of MDC and NK cells in high-risk HIV-1-exposed seronegative IV-drug users who share needles when compared with low-risk nonsharing IV-drug user controls. J Acquir Immune Defic Syndr 68:264-73
Gekonge, Bethsebah; Bardin, Matthew C; Montaner, Luis J (2015) Short communication: Nitazoxanide inhibits HIV viral replication in monocyte-derived macrophages. AIDS Res Hum Retroviruses 31:237-41
Webster, Marie R; Xu, Mai; Kinzler, Kathryn A et al. (2015) Wnt5A promotes an adaptive, senescent-like stress response, while continuing to drive invasion in melanoma cells. Pigment Cell Melanoma Res 28:184-95
Zhang, Xuhui; Akech, Jacqueline; Browne, Gillian et al. (2015) Runx2-Smad signaling impacts the progression of tumor-induced bone disease. Int J Cancer 136:1321-32
Kung, Che-Pei; Khaku, Sakina; Jennis, Matthew et al. (2015) Identification of TRIML2, a novel p53 target, that enhances p53 SUMOylation and regulates the transactivation of proapoptotic genes. Mol Cancer Res 13:250-62
Wolf, Amaya I; Strauman, Maura C; Mozdzanowska, Krystyna et al. (2014) Pneumolysin expression by streptococcus pneumoniae protects colonized mice from influenza virus-induced disease. Virology 462-463:254-65
Gumireddy, Kiranmai; Li, Anping; Kossenkov, Andrew V et al. (2014) ID1 promotes breast cancer metastasis by S100A9 regulation. Mol Cancer Res 12:1334-43
Budina-Kolomets, Anna; Balaburski, Gregor M; Bondar, Anastasia et al. (2014) Comparison of the activity of three different HSP70 inhibitors on apoptosis, cell cycle arrest, autophagy inhibition, and HSP90 inhibition. Cancer Biol Ther 15:194-9
Newhart, Alyshia; Janicki, Susan M (2014) Seeing is believing: visualizing transcriptional dynamics in single cells. J Cell Physiol 229:259-65

Showing the most recent 10 out of 182 publications