The Mouse Genetics Facility was established in 1999 in response to the increasing need of Cancer Center investigators for analysis of gene function in mouse models, and has received Cancer Center support since 2002. Since the last renewal, the Facility has changed leadership, with Dr. Anthony Capobianco now the scientific director of the Facility and Dr. Ping Jiang the facility director. In this funding period, the Institute has invested $167,450 for new and upgraded equipment and renovated laboratory and animal facility space. The Facility provides highly efficient production of both transgenic and knock-out/knock-in (KO/KI) mice, plus it provides a unique resource and expertise in embryonic stem (ES) cell cultivation and engineering, which benefits Cancer Center investigators generating both in vivo and in vitro murine models of cancer. Current services are aligned with the research objectives of the Cancer Center programs and include: (1) production of transgenic mice by pronuclear microinjection of DNA transgene constructs;(2) generation of genetargeted 129 and C57BL mouse ES cell clones;(3) production of chimeric mice derived from microinjection of gene-targeted ES cells into blastocysts;(4) rederivation of mouse lines by embryo transfer;and (5) ES cell cultivation and engineering. Since 2006, the Facility has produced 15 lines of transgenic mice, successfully generated 11 lines of KO/KI mouse ES cell clones, and produced 8 lines of chimeric KO/KI mice. In addition, the Facility successfully rederived a line of an engineered mouse strain and will offer a mouse embryo cryopreservation service in 2008. The Facility is actively collaborating with Cancer Center investigators to utilize its mouse ES cell technology, with the aim of using human ES cells as a vehicle to derive mutant or disease specific cell lineages as a new human disease model system. Goals for the Facility over the next funding period include developing lentiviral mediated transgenesis for some strains of mice that are difficult to produce with DNA microinjection, developing use of tetraploid complementation as an efficient approach to produce chimeras from injections of ES cells of C57BL origin into blastocysts, and establishing human ES cell cultivation and engineering as a routine service.

Public Health Relevance

Production of genetically modified mice permits cancer center investigators the possibility to create mice that carry identical genetic changes seen in human tumors to determine if those changes are sufficient to copy the characteristics of the human tumor. Non-animal systems are unable to examine a mutant cancer gene in such a rich context.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA010815-44
Application #
8461267
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2013-03-01
Budget End
2014-02-28
Support Year
44
Fiscal Year
2013
Total Cost
$146,542
Indirect Cost
$61,335
Name
Wistar Institute
Department
Type
DUNS #
075524595
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Qin, Jie; Rajaratnam, Rajathees; Feng, Li et al. (2015) Development of organometallic S6K1 inhibitors. J Med Chem 58:305-14
Tomescu, Costin; Seaton, Kelly E; Smith, Peter et al. (2015) Innate activation of MDC and NK cells in high-risk HIV-1-exposed seronegative IV-drug users who share needles when compared with low-risk nonsharing IV-drug user controls. J Acquir Immune Defic Syndr 68:264-73
Gekonge, Bethsebah; Bardin, Matthew C; Montaner, Luis J (2015) Short communication: Nitazoxanide inhibits HIV viral replication in monocyte-derived macrophages. AIDS Res Hum Retroviruses 31:237-41
Webster, Marie R; Xu, Mai; Kinzler, Kathryn A et al. (2015) Wnt5A promotes an adaptive, senescent-like stress response, while continuing to drive invasion in melanoma cells. Pigment Cell Melanoma Res 28:184-95
Zhang, Xuhui; Akech, Jacqueline; Browne, Gillian et al. (2015) Runx2-Smad signaling impacts the progression of tumor-induced bone disease. Int J Cancer 136:1321-32
Kung, Che-Pei; Khaku, Sakina; Jennis, Matthew et al. (2015) Identification of TRIML2, a novel p53 target, that enhances p53 SUMOylation and regulates the transactivation of proapoptotic genes. Mol Cancer Res 13:250-62
Wolf, Amaya I; Strauman, Maura C; Mozdzanowska, Krystyna et al. (2014) Pneumolysin expression by streptococcus pneumoniae protects colonized mice from influenza virus-induced disease. Virology 462-463:254-65
Gumireddy, Kiranmai; Li, Anping; Kossenkov, Andrew V et al. (2014) ID1 promotes breast cancer metastasis by S100A9 regulation. Mol Cancer Res 12:1334-43
Budina-Kolomets, Anna; Balaburski, Gregor M; Bondar, Anastasia et al. (2014) Comparison of the activity of three different HSP70 inhibitors on apoptosis, cell cycle arrest, autophagy inhibition, and HSP90 inhibition. Cancer Biol Ther 15:194-9
Newhart, Alyshia; Janicki, Susan M (2014) Seeing is believing: visualizing transcriptional dynamics in single cells. J Cell Physiol 229:259-65

Showing the most recent 10 out of 182 publications