The Gene Expression and Regulation Program (GER) is comprised of eight laboratories that work together in the areas of gene transcription and chromatin biology. The overarching goals of the Program are to unravel how deregulated gene expression drives malignant transformation and disease progression, and to provide novel, tractable targets for cancer therapy. The Program brings together complementary expertise of research excellence around three general flagship themes: Transcriptional regulation, epigenetics, and chromosome organization (i). Structural analysis and chemical biology (ii);and RNA-mediated gene regulation and microRNA metabolism (iii). Over the last budget cycle, GER investigators have made impressive gains in advancing their scientific pursuits. This is reflected in the publication of 157 cancer related peer-reviewed articles in the top-tier literature, an increase in the number of intra- and interprogrammatic collaborative publications from 10% in 2008 to 23% in 2012, and a doubling of National Cancer Institute (NCI) programmatic funding from $0.85 million in 2008 to $1.8 million in 2012. Together with other cancer-related peer-reviewed awards totaling $2 million, and non-peer-reviewed support of $1.3 million, the total funding base of the GER Program now stands at 29 individual awards and $5.2 million (direct costs). Overall, the Program has continued to function as a hub for transdisciplinary collaboration, graduate education, and inter-programmatic interaction within the Cancer Center, as well as neighboring academic Institutions. The home of two T32 training grants and a pivotal contributor to three collaborative P01 grants, the GER Program has tangibly advanced the long-term goals of the Cancer Center connecting basic understanding of cancer gene expression to mechanistic pathways of metastasis, chromosomal instability and developmental therapeutics.

Public Health Relevance

Changes in transcriptional control of gene expression function as pivotal drivers of virtually every tumor trait, but how these processes are dynamically regulated in the context of the human disease is still poorly understood. Unraveling these pathways using a complement of interdisciplinary experimental approaches as pursued by the GER Program will elucidate basic mechanistic underpinnings of malignant transformation and open new avenues for molecular, targeted therapeutics.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Wistar Institute
United States
Zip Code
Qin, Jie; Rajaratnam, Rajathees; Feng, Li et al. (2015) Development of organometallic S6K1 inhibitors. J Med Chem 58:305-14
Tomescu, Costin; Seaton, Kelly E; Smith, Peter et al. (2015) Innate activation of MDC and NK cells in high-risk HIV-1-exposed seronegative IV-drug users who share needles when compared with low-risk nonsharing IV-drug user controls. J Acquir Immune Defic Syndr 68:264-73
Gekonge, Bethsebah; Bardin, Matthew C; Montaner, Luis J (2015) Short communication: Nitazoxanide inhibits HIV viral replication in monocyte-derived macrophages. AIDS Res Hum Retroviruses 31:237-41
Webster, Marie R; Xu, Mai; Kinzler, Kathryn A et al. (2015) Wnt5A promotes an adaptive, senescent-like stress response, while continuing to drive invasion in melanoma cells. Pigment Cell Melanoma Res 28:184-95
Zhang, Xuhui; Akech, Jacqueline; Browne, Gillian et al. (2015) Runx2-Smad signaling impacts the progression of tumor-induced bone disease. Int J Cancer 136:1321-32
Kung, Che-Pei; Khaku, Sakina; Jennis, Matthew et al. (2015) Identification of TRIML2, a novel p53 target, that enhances p53 SUMOylation and regulates the transactivation of proapoptotic genes. Mol Cancer Res 13:250-62
Wolf, Amaya I; Strauman, Maura C; Mozdzanowska, Krystyna et al. (2014) Pneumolysin expression by streptococcus pneumoniae protects colonized mice from influenza virus-induced disease. Virology 462-463:254-65
Gumireddy, Kiranmai; Li, Anping; Kossenkov, Andrew V et al. (2014) ID1 promotes breast cancer metastasis by S100A9 regulation. Mol Cancer Res 12:1334-43
Budina-Kolomets, Anna; Balaburski, Gregor M; Bondar, Anastasia et al. (2014) Comparison of the activity of three different HSP70 inhibitors on apoptosis, cell cycle arrest, autophagy inhibition, and HSP90 inhibition. Cancer Biol Ther 15:194-9
Newhart, Alyshia; Janicki, Susan M (2014) Seeing is believing: visualizing transcriptional dynamics in single cells. J Cell Physiol 229:259-65

Showing the most recent 10 out of 182 publications