The Protein Expression Shared Resource provides Cancer Center members expert technical assistance in recombinant DNA plasmid engineering, protein expression in bacteria and baculovirus-infected insect cells, purification of recombinant proteins, and production of high-titer retroviruses (e.g. lentiviruses) for delivery of shRNA and cDNAs to mammalian cells. Cancer Center investigators require high quality recombinant proteins to achieve a wide range of experimental objectives, such as characterization of enzymatic activities, crystallization for structural analysis, characterization of structure-function relationships of protein-protein, protein-nucleic acid, and protein-small molecule interactions; development of assays for small molecule high throughput screening; and immunization of rabbits/mice to generate custom antibodies. The Resource continues to maintain cutting edge technology for recombinant protein expression and preparation of high-titer retroviral vector. Under the guidance of an experienced Managing Director, laboratory staff are highly cross-trained technical experts in all areas of vector technology for recombinant protein expression, baculovirus generation, affinity and conventional chromatography approaches to protein purification, and production of infectious retroviruses. The centralization and standardization of these practices allows for high throughput expression plasmid construction and large-volume protein expression services, including quality assurance and control procedures to ensure efficient, consistent production and purification of high quality recombinant proteins. The Resource also maximizes biosafety by confining retroviruses (e.g. lentivirus) production to a centralized biosafety level 2 (BSL2) unit, which prevents aerosolization of viruses from contaminating incubators and parental cultures of cell lines, and improves quality control in the production of virus stocks to be used in gain- and loss-of-function experiments in vitro and in vivo. Protein Expression was classified as a Type I Shared Resource to reflect the well-defined, essential nature of its services. This group classification is described in the Cancer Center Administration section of this application. In the last funding period the Cancer Center continued to invest in maintaining a state-of-the-art Resource. Protein Expression Shared Resource plays a crucial role in providing preliminary data to support project development, publications, and grant applications for members of all three Cancer Center Programs.

Public Health Relevance

Recombinant DNA technology has provided the unique opportunity to produce otherwise rare proteins derived from recombinant genes. The availability of these proteins has enabled many types of experiments that would have otherwise been impossible. Furthermore, the preparation of high-titer retrovirus has become a primary approach to manipulate the expression of genes for cancer research.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA010815-48
Application #
9228948
Study Section
Subcommittee A - Cancer Centers (NCI-A)
Project Start
Project End
Budget Start
2017-03-01
Budget End
2018-02-28
Support Year
48
Fiscal Year
2017
Total Cost
$78,918
Indirect Cost
$34,821
Name
Wistar Institute
Department
Type
Research Institutes
DUNS #
075524595
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Li, Heng; Wang, Zhize; Xiao, Wei et al. (2018) Androgen-receptor splice variant-7-positive prostate cancer: a novel molecular subtype with markedly worse androgen-deprivation therapy outcomes in newly diagnosed patients. Mod Pathol 31:198-208
Shastrula, Prashanth K; Rice, Cory T; Wang, Zhuo et al. (2018) Structural and functional analysis of an OB-fold in human Ctc1 implicated in telomere maintenance and bone marrow syndromes. Nucleic Acids Res 46:972-984
Duperret, Elizabeth K; Trautz, Aspen; Ammons, Dylan et al. (2018) Alteration of the Tumor Stroma Using a Consensus DNA Vaccine Targeting Fibroblast Activation Protein (FAP) Synergizes with Antitumor Vaccine Therapy in Mice. Clin Cancer Res 24:1190-1201
Heppt, Markus V; Wang, Joshua X; Hristova, Denitsa M et al. (2018) MSX1-Induced Neural Crest-Like Reprogramming Promotes Melanoma Progression. J Invest Dermatol 138:141-149
Wu, Shuai; Fatkhutdinov, Nail; Fukumoto, Takeshi et al. (2018) SWI/SNF catalytic subunits' switch drives resistance to EZH2 inhibitors in ARID1A-mutated cells. Nat Commun 9:4116
Ecker, Brett L; Kaur, Amanpreet; Douglass, Stephen M et al. (2018) Age-Related Changes in HAPLN1 Increase Lymphatic Permeability and Affect Routes of Melanoma Metastasis. Cancer Discov :
Abdel-Mohsen, Mohamed; Kuri-Cervantes, Leticia; Grau-Exposito, Judith et al. (2018) CD32 is expressed on cells with transcriptionally active HIV but does not enrich for HIV DNA in resting T cells. Sci Transl Med 10:
Fukumoto, Takeshi; Magno, Elizabeth; Zhang, Rugang (2018) SWI/SNF Complexes in Ovarian Cancer: Mechanistic Insights and Therapeutic Implications. Mol Cancer Res 16:1819-1825
Cañadas, Israel; Thummalapalli, Rohit; Kim, Jong Wook et al. (2018) Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses. Nat Med 24:1143-1150
Basu, Subhasree; Gnanapradeepan, Keerthana; Barnoud, Thibaut et al. (2018) Mutant p53 controls tumor metabolism and metastasis by regulating PGC-1?. Genes Dev 32:230-243

Showing the most recent 10 out of 741 publications