The Gene Expression and Regulation Program (GER) is comprised of eight laboratories that work together in the areas of gene transcription and chromatin biology. The overarching goals of the Program are to unravel how deregulated gene expression drives malignant transformation and disease progression, and to provide novel, tractable targets for cancer therapy. The Program brings together complementary expertise of research excellence around three general flagship themes: Transcriptional regulation, epigenetics, and chromosome organization (i). Structural analysis and chemical biology (ii); and RNA-mediated gene regulation and microRNA metabolism (iii). Over the last budget cycle, GER investigators have made impressive gains in advancing their scientific pursuits. This is reflected in the publication of 157 cancer related peer-reviewed articles in the top-tier literature, an increase in the number of intra- and interprogrammatic collaborative publications from 10% in 2008 to 23% in 2012, and a doubling of National Cancer Institute (NCI) programmatic funding from $0.85 million in 2008 to $1.8 million in 2012. Together with other cancer-related peer-reviewed awards totaling $2 million, and non-peer-reviewed support of $1.3 million, the total funding base of the GER Program now stands at 29 individual awards and $5.2 million (direct costs). Overall, the Program has continued to function as a hub for transdisciplinary collaboration, graduate education, and inter-programmatic interaction within the Cancer Center, as well as neighboring academic Institutions. The home of two T32 training grants and a pivotal contributor to three collaborative P01 grants, the GER Program has tangibly advanced the long-term goals of the Cancer Center connecting basic understanding of cancer gene expression to mechanistic pathways of metastasis, chromosomal instability and developmental therapeutics.

Public Health Relevance

Changes in transcriptional control of gene expression function as pivotal drivers of virtually every tumor trait, but how these processes are dynamically regulated in the context of the human disease is still poorly understood. Unraveling these pathways using a complement of interdisciplinary experimental approaches as pursued by the GER Program will elucidate basic mechanistic underpinnings of malignant transformation and open new avenues for molecular, targeted therapeutics.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Wistar Institute
United States
Zip Code
Veglia, Filippo; Gabrilovich, Dmitry I (2017) Dendritic cells in cancer: the role revisited. Curr Opin Immunol 45:43-51
Tomescu, Costin; Tebas, Pablo; Montaner, Luis J (2017) IFN-? augments NK-mediated antibody-dependent cellular cytotoxicity (ADCC) of HIV-1 infected autologous CD4+ T cells regardless of MHC-I downregulation. AIDS :
Vitiello, Marianna; Tuccoli, Andrea; D'Aurizio, Romina et al. (2017) Context-dependent miR-204 and miR-211 affect the biological properties of amelanotic and melanotic melanoma cells. Oncotarget 8:25395-25417
Karpel-Massler, Georg; Ishida, Chiaki Tsuge; Bianchetti, Elena et al. (2017) Inhibition of Mitochondrial Matrix Chaperones and Antiapoptotic Bcl-2 Family Proteins Empower Antitumor Therapeutic Responses. Cancer Res 77:3513-3526
Hoffman, Hunter; Rice, Cory; Skordalakes, Emmanuel (2017) Structural Analysis Reveals the Deleterious Effects of Telomerase Mutations in Bone Marrow Failure Syndromes. J Biol Chem 292:4593-4601
Lu, Fang; Wiedmer, Andreas; Martin, Kayla A et al. (2017) Coordinate Regulation of TET2 and EBNA2 Control DNA Methylation State of Latent Epstein-Barr Virus. J Virol :
Pestell, Timothy G; Jiao, Xuanmao; Kumar, Mukesh et al. (2017) Stromal cyclin D1 promotes heterotypic immune signaling and breast cancer growth. Oncotarget 8:81754-81775
Lynch, Shannon M; Mitra, Nandita; Ravichandran, Krithika et al. (2017) Telomere Length and Neighborhood Circumstances: Evaluating Biological Response to Unfavorable Exposures. Cancer Epidemiol Biomarkers Prev 26:553-560
Perales-Puchalt, Alfredo; Svoronos, Nikolaos; Rutkowski, Melanie R et al. (2017) Follicle-Stimulating Hormone Receptor Is Expressed by Most Ovarian Cancer Subtypes and Is a Safe and Effective Immunotherapeutic Target. Clin Cancer Res 23:441-453
Bryant, Kelly G; Chae, Young Chan; Martinez, Rogelio L et al. (2017) A Mitochondrial-targeted purine-based HSP90 antagonist for leukemia therapy. Oncotarget 8:112184-112198

Showing the most recent 10 out of 685 publications