The Wistar Institute Cancer Center presents four Type I Shared Resources in this application: Animal Facility, Flow Cytometry, Imaging, and Protein Expression. During the past project period the Cancer Center made substantial investments in the Type I Shared Resources, utilizing over $7.2 million in capital funds and equipment grants for equipment upgrades and facility improvements. These Resources function as engines, integrated components ofthe research being conducted by Cancer Center members. The Type I Resources have demonstrated a significant impact to the scientific objectives ofthe Cancer Center, contributing to 172 of 382 (45%) of the unique cancer-related publications reported by the three scientific Programs. Following a comprehensive realignment of its Shared Resources by the appointment of dedicated leadership as described in the Cancer Center Administration section of this application, Shared Resources were grouped as Type I or Type II reflecting the intensity of collaborative input of their services. Type I Shared Resources provide critical and well-defined services that require an initial consultation followed by the delivery of time/format-defined services. Collaborative input for the type of service and data analysis is often required through consultation, yet such services generally achieve or are close in achieving full recovery of operating costs through chargebacks. Clear benchmarks and objective review criteria were introduced in order to enable timely oversight, scientific impact, quality of service, and financial strength for each Shared Resource. Regular evaluations of scientific impact for the Cancer Center (i) and sustainability of services (ii) for each resource guide the decision-making process for the Shared Resources. Overall Type I Shared Resources provide an essential cornerstone for research as their impact on discovery is inherent to the reliability, innovation, and state-of-the-art service platforms delivered.

Public Health Relevance

The deployment of state-of-the-art, technologically advanced scientific capabilities has become an indispensable requirement to conduct modern cancer research. Type I Shared Resources fulfill this need by providing well-defined, personalized service to Wistar Cancer Center investigators in support of their interprogrammatic and multidisciplinary research programs

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA010815-49
Application #
9438873
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2018-03-01
Budget End
2019-02-28
Support Year
49
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Wistar Institute
Department
Type
DUNS #
075524595
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Kaur, Amanpreet; Ecker, Brett L; Douglass, Stephen M et al. (2018) Remodeling of the Collagen Matrix in Aging Skin Promotes Melanoma Metastasis and Affects Immune Cell Motility. Cancer Discov :
Shastrula, Prashanth Krishna; Lund, Peder J; Garcia, Benjamin A et al. (2018) Rpp29 regulates histone H3.3 chromatin assembly through transcriptional mechanisms. J Biol Chem 293:12360-12377
Chen, Gang; Huang, Alexander C; Zhang, Wei et al. (2018) Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560:382-386
Beer, Lynn A; Speicher, David W (2018) Protein Detection in Gels Using Fixation. Curr Protoc Protein Sci 91:10.5.1-10.5.20
Perego, M; Maurer, M; Wang, J X et al. (2018) A slow-cycling subpopulation of melanoma cells with highly invasive properties. Oncogene 37:302-312
Echevarría-Vargas, Ileabett M; Reyes-Uribe, Patricia I; Guterres, Adam N et al. (2018) Co-targeting BET and MEK as salvage therapy for MAPK and checkpoint inhibitor-resistant melanoma. EMBO Mol Med 10:
Li, Heng; Wang, Zhize; Xiao, Wei et al. (2018) Androgen-receptor splice variant-7-positive prostate cancer: a novel molecular subtype with markedly worse androgen-deprivation therapy outcomes in newly diagnosed patients. Mod Pathol 31:198-208
Shastrula, Prashanth K; Rice, Cory T; Wang, Zhuo et al. (2018) Structural and functional analysis of an OB-fold in human Ctc1 implicated in telomere maintenance and bone marrow syndromes. Nucleic Acids Res 46:972-984
Duperret, Elizabeth K; Trautz, Aspen; Ammons, Dylan et al. (2018) Alteration of the Tumor Stroma Using a Consensus DNA Vaccine Targeting Fibroblast Activation Protein (FAP) Synergizes with Antitumor Vaccine Therapy in Mice. Clin Cancer Res 24:1190-1201
Heppt, Markus V; Wang, Joshua X; Hristova, Denitsa M et al. (2018) MSX1-Induced Neural Crest-Like Reprogramming Promotes Melanoma Progression. J Invest Dermatol 138:141-149

Showing the most recent 10 out of 741 publications