The goal of the DNA Sequencing Shared Facility (DSSF) is to provide UAB Comprehensive Cancer Center (CCC) members with state-of-the-art automated Sanger sequencing. To this end, the specific aims are: 1. To continue to provide state-of-the-art automated DNA sequencing capabilities by maintaining dedicated Applied Biosystems Sequencers (ABI 3730XL) with capillary electrophoresis systems. 2. To continue to provide technical support and training to Cancer Center members, especially junior investigators, in DNA template preparation, primer design, cycle sequencing methodologies, and standard DNA sequence editing and analysis. To expand facility functions by providing microsatellite analyses and real-time PCR technologies as new services. To effectively interface with the Microarray Shared Facility (MSF) and the Comprehensive Genomics Shared Facility (CGSF) to assure services are complementary and not overlapping. Although originally established within the Center for AIDS Research (in 1987), CCC members now account for 70% of this facility's usage. This is because numerous laboratories within the Cancer Center are absolutely dependent on high throughput DNA sequencing for their research programs. The DSSF has ensured that CCC members have access to this service in a timely and cost-effective manner. In the last budget period, the DSSF has developed new methodologies for the automated sequencing process, trained CCC investigators in template preparation and the use of sequence analysis tools, upgraded and modernized pertinent equipment, employed automation technologies to expand capacity, and installed a Laboratory Information Management System to optimize the user interface. Since 2004, the DSSF has supported 104 CCC investigators and provided essential services for more than 175 cancer and cancer related grants and contracts. More than 458 million base pairs of primary sequence were determined, generating more than $2,710,000 in user charge-backs. Newly implemented automation increased the facility's efficiency and allowed the DSSF to reduce user charge-backs from $8 to $6 per sequencing reaction ($4 per reaction for 96 well plates).

Public Health Relevance

The ability to rapidly and accurately sequence DNA is necessary for cancer-related research ranging from basic cell biology, immunology and genetics to the development of new cancer vaccines and treatments. Access to low-cost and rapid sequencing is fundamental to the success of both basic and translational science programs. Many CCC members need and depend on this service. The DNA Sequencing Shared Facility thus represents an integral component of the Comprehensive Cancer Center.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA013148-41
Application #
8732229
Study Section
Subcommittee G - Education (NCI)
Project Start
1997-03-28
Project End
2016-03-31
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
41
Fiscal Year
2013
Total Cost
$130,048
Indirect Cost
$68,572
Name
University of Alabama Birmingham
Department
Type
DUNS #
063690705
City
Birmingham
State
AL
Country
United States
Zip Code
35294
Nebane, N Miranda; Coric, Tatjana; McKellip, Sara et al. (2016) Acoustic Droplet Ejection Technology and Its Application in High-Throughput RNA Interference Screening. J Lab Autom 21:198-203
Zhang, Wei; Zhai, Ling; Wang, Yimin et al. (2016) Discovery of a novel inhibitor of kinesin-like protein KIFC1. Biochem J 473:1027-35
Carvajal, Felipe; Vallejos, Maricarmen; Walters, Beth et al. (2016) Structural domains within the HIV-1 mRNA and the ribosomal protein S25 influence cap-independent translation initiation. FEBS J 283:2508-27
Badiga, Suguna; Chambers, Michelle M; Huh, Warner et al. (2016) Expression of p16(INK4A) in cervical precancerous lesions is unlikely to be preventable by human papillomavirus vaccines. Cancer 122:3615-3623
Zhang, Wei; Zhai, Ling; Lu, Wenyan et al. (2016) Discovery of Novel Allosteric Eg5 Inhibitors Through Structure-Based Virtual Screening. Chem Biol Drug Des 88:178-87
Hull, Travis D; Boddu, Ravindra; Guo, Lingling et al. (2016) Heme oxygenase-1 regulates mitochondrial quality control in the heart. JCI Insight 1:e85817
Hegde, Shylaja; Kesterson, Robert A; Srivastava, Om P (2016) CRYβA3/A1-Crystallin Knockout Develops Nuclear Cataract and Causes Impaired Lysosomal Cargo Clearance and Calpain Activation. PLoS One 11:e0149027
Smith, M Ryan; Vayalil, Praveen K; Zhou, Fen et al. (2016) Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels. Redox Biol 8:136-48
McNally, Lacey R; Mezera, Megan; Morgan, Desiree E et al. (2016) Current and Emerging Clinical Applications of Multispectral Optoacoustic Tomography (MSOT) in Oncology. Clin Cancer Res 22:3432-9
Styles, Nathan A; Shonsey, Erin M; Falany, Josie L et al. (2016) Carboxy-terminal mutations of bile acid CoA:N-acyltransferase alter activity and substrate specificity. J Lipid Res 57:1133-43

Showing the most recent 10 out of 566 publications