The goal of the X-ray Crystallography Shared Facility is to provide CCC members support for research into the fine structural details of proteins, and the functional consequences of protein structures. The facility accomplishes this by providing access to critical biophysical facilities including;1) X-ray crystallographic data collection (via in-house X-ray systems and dedicated access to two synchrotron beamlines via membership in the Southeastern Collaborative Access Team (SERCAT) at Argonne Synchrotron Facility;2) highthroughput nano-crystallization for aqueous and membrane proteins;3) a novel technology (developed by the Shared Facility Director) that rapidly optimizes protein solubility and stability;4)BIAcore;5) high-throughput differential scanning and isothermal calorimetry;and 6) circular dichroism (CD). During the past funding period, the facility supported fundamental and translational research by40 CCC members, resulting in over 40 three-dimensional structures for proteins, 12 of which are cancer therapeutic targets. These investigators published 96 research articles in top peer-reviewed journals. CCC members who used the shared facility in the past five years are associated with four CCC programs: Cancer Chemoprevention, Virology, Experimental Therapeutics and Cancer Cell Biology. An example of the value added of this shared facility involves the X-ray structure of the retinoid X receptor, RXR, a protein implicated in breast cancer. The high-resolution protein structure plus complex structures of RXR bound to 14 different inhibitors directly supported the Breast SPORE program grant. This work aided the development of a lead inhibitor (UAB30) of RXR, currently in phase I human clinical trials and is continuing to support the development of second-generation inhibitors.
Specific aims of the X-ray Crystallography Shared Facility include: a) Continue to upgrade existing technologies to maintain a state-of-the-art facility and continue to incorporate novel technologies that support structural and biophysical protein characterization, b) Provide Cancer Center members with cost-effective access to several different biophysical characterization techniques to enhance basic and/or translational cancer research, c) Provide a state-of-the-art training facility to support the next generation of cancer research scientists, including graduate students and post-doctoral fellows as well as CCC faculty members, d) Continue to provide pilot/seed grants (via other non-CCC discretionary funds) to stimulate new cancer-related research. Projects are funded through competitive NIH-style peer review of proposals.

Public Health Relevance

The understanding of protein structure is critical in both discovering fundamental mechanisms of cancer biology, and in developing therapeutics. The X-ray Crystallography Shared Facility supports gathering of structural and other biophysical information for CCC investigators engaged in fundamental and translational research mechanisms, prevention, and therapeutic development for cancer.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Alabama Birmingham
United States
Zip Code
Fauci, Janelle M; Sabbatino, Francesco; Wang, Yangyang et al. (2014) Monoclonal antibody-based immunotherapy of ovarian cancer: targeting ovarian cancer cells with the B7-H3-specific mAb 376.96. Gynecol Oncol 132:203-10
Carson, Tiffany L; Hardy, Claudia M; Greene, Eva et al. (2014) Considerations for bio-specimen collection among black women residing in the rural Deep South participating in a cancer prevention study. J Community Genet 5:257-63
Kim, Hyunki; Rigell, Christopher J; Zhai, Guihua et al. (2014) Antagonistic effects of anti-EMMPRIN antibody when combined with chemotherapy against hypovascular pancreatic cancers. Mol Imaging Biol 16:85-94
Devine, D J; Rostas, J W; Metge, B J et al. (2014) Loss of N-Myc interactor promotes epithelial-mesenchymal transition by activation of TGF-*/SMAD signaling. Oncogene 33:2620-8
Sonpavde, Guru; Willey, Christopher D; Sudarshan, Sunil (2014) Fibroblast growth factor receptors as therapeutic targets in clear-cell renal cell carcinoma. Expert Opin Investig Drugs 23:305-15
Saini, Reshu; Hoyt, Kenneth (2014) Recent developments in dynamic contrast-enhanced ultrasound imaging of tumor angiogenesis. Imaging Med 6:41-52
Shim, Eun-Hee; Livi, Carolina B; Rakheja, Dinesh et al. (2014) L-2-Hydroxyglutarate: an epigenetic modifier and putative oncometabolite in renal cancer. Cancer Discov 4:1290-8
Gan, Yujun; Buckels, Ashiya; Liu, Ying et al. (2014) Human GH receptor-IGF-1 receptor interaction: implications for GH signaling. Mol Endocrinol 28:1841-54
Johnson, David H; Wilson, W William; DeLucas, Lawrence J (2014) Protein solubilization: a novel approach. J Chromatogr B Analyt Technol Biomed Life Sci 971:99-106
Ramos, Theresa N; Bullard, Daniel C; Barnum, Scott R (2014) ICAM-1: isoforms and phenotypes. J Immunol 192:4469-74

Showing the most recent 10 out of 364 publications