The phenotypic characterization of normal and neoplastic cells and their isolation for functional and molecular analysis by flow cytometry is fundamental to cancer research. The Flow Cytometry Shared Resource assists HICCC members in flow cytometry-based studies. The capacity of the facility has increased substantially over the past five years due to the acquisition of new instruments and the hiring of additional personnel. The facility now operates six instruments, including three fluorescence-activated cell sorters and two advanced cell analyzers. The cell sorters allow high-speed cell sorting and can detect up to 12 fiuorescent parameters. One sorter in addition is equipped with a laser that enables detection of the living color fluorescent proteins dsRed and the dsRed derivatives mCherry and tdTomato;one instrument Is placed in a biosafety hood to enable sorting of primary human material. The two advanced cell analyzers besides multi-color fluorescence are able to perform various specialty applications such as multiple fluorescent protein analysis including dsRed derivatives, calcium flux measurements, determination of DNA content in live cells, and identification of the "side population". In addition to those sophisticated instruments, the facility provides access to a user-operated basic cytometer permitting four-color immunophenotyping as well as cell cycle and apoptosis assays. The three analyzers are accessible for investigators around-the-clock. The facility manager since 2004 is Ms. Kristie Gordon, who has more than 25-years of experience in operating flow cytometers. The facility director since 2007 is Dr. Ulf Klein, whose past and present research on B-cell malignancies involves the use of various flow cytometrical approaches. Over the last several years, the services of the facility have benefited more than 100 Columbia University Pis, with HICCC members comprising the main clients, accounting for more than 60% of usage. This high usage allows the facility to offer the services at low fees, which are further reduced for HICCC members. The sophisticated equipment available in the facility allows investigators at Columbia to perform the highest state-of-the-art research in the area of fiow cytometry, and therefore represent a vital resource for HICCC members.

Public Health Relevance

The ability to characterize and isolate defined cell populations for functional and molecular analysis by fiow c^ometry has become an essential tool in cancer research. The Flow Cytometry Shared Resource provides state-of-the-art instruments and has long-standing expertise in flow-sorting and analysis, thus supporting the research of Cancer Center members. This intensively used facility is a crucial part ofthe HICCC.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Columbia University (N.Y.)
New York
United States
Zip Code
Bassuk, Alexander G; Sujirakul, Tharikarn; Tsang, Stephen H et al. (2014) A novel RPGR mutation masquerading as Stargardt disease. Br J Ophthalmol 98:709-11
Li, Yao; Wu, Wen-Hsuan; Hsu, Chun-Wei et al. (2014) Gene therapy in patient-specific stem cell lines and a preclinical model of retinitis pigmentosa with membrane frizzled-related protein defects. Mol Ther 22:1688-97
Wert, Katherine J; Sancho-Pelluz, Javier; Tsang, Stephen H (2014) Mid-stage intervention achieves similar efficacy as conventional early-stage treatment using gene therapy in a pre-clinical model of retinitis pigmentosa. Hum Mol Genet 23:514-23
Shen, Sherry; Sujirakul, Tharikarn; Tsang, Stephen H (2014) Next-generation sequencing revealed a novel mutation in the gene encoding the beta subunit of rod phosphodiesterase. Ophthalmic Genet 35:142-50
Palomero, Teresa; Couronné, Lucile; Khiabanian, Hossein et al. (2014) Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas. Nat Genet 46:166-70
Higuchi-Sanabria, Ryo; Pernice, Wolfgang M A; Vevea, Jason D et al. (2014) Role of asymmetric cell division in lifespan control in Saccharomyces cerevisiae. FEMS Yeast Res 14:1133-46
Lam, A T; Curschellas, C; Krovvidi, D et al. (2014) Controlling self-assembly of microtubule spools via kinesin motor density. Soft Matter 10:8731-6
Olszak, Torsten; Neves, Joana F; Dowds, C Marie et al. (2014) Protective mucosal immunity mediated by epithelial CD1d and IL-10. Nature 509:497-502
Murtomaki, Aino; Uh, Minji K; Kitajewski, Chris et al. (2014) Notch signaling functions in lymphatic valve formation. Development 141:2446-51
Nong, Eva; Lee, Winston; Merriam, Joanna E et al. (2014) Disease progression in autosomal dominant cone-rod dystrophy caused by a novel mutation (D100G) in the GUCA1A gene. Doc Ophthalmol 128:59-67

Showing the most recent 10 out of 142 publications