The scientific goals and central themes of the Mouse Models and Cancer Stem Cells Program are to investigate stem cell function, including self renewal and differentiation, growth factor requirements and microRNAs, using mouse, Drosophila, Xenopus, and zebrafish as models, with the goal of learning more about tissue and cancer stem cells. In addition, developmental signaling pathways that are known to be reactivated and drive the cancer cell phenotype, including the Wnt/p-catenin, ErbB2 and TAM receptor tyrosine kinases, and TGF-P pathways, are being studied. Genetic models are being developed and used to study cancer and inflammation. The program includes eleven members from six different laboratories: Senyon Choe (TGF-J3 receptor structure and signaling), Fred Gage (stem cell self renewal in the nervous system and cancer), Juan Carlos Izpisua Belmonte (tissue stem cell function in development and cancer), Leanne Jones (stem cell self renewal mechanisms), Chris Kintner (Notch pathway signaling in development), Kuo-Fen Lee (ErbB2 receptor tyrosine kinase signaling), Greg Lemke (TAM receptor tyrosine kinase signaling in the immune system), Samuel Pfaff (EphA receptor tyrosine kinase signaling in development), John Thomas (Drosophila glioblastoma model), InderVerma (mouse models of cancer and lentivirus vector development), and John Young (host cell factors in HTLV infection). The total amount of peer-reviewed support (direct costs) for the last budget year was $7,449,255. None of this was from direct NCI support. Substantial NIH and other federal support for this program is outlined in the table of externally funded research projects. The total number of publications by members of this program in the last grant period (2004-2008) was 299. Of the total publications, 10% were intraprogrammatic and 11 % were interprogrammatic (see Section 8 for explanation of how the program reorganization affects these numbers).

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA014195-38
Application #
8208696
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2010-12-01
Budget End
2011-11-30
Support Year
38
Fiscal Year
2011
Total Cost
$23,577
Indirect Cost
Name
Salk Institute for Biological Studies
Department
Type
DUNS #
078731668
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Evan, Gerard I; Hah, Nasun; Littlewood, Trevor D et al. (2017) Re-engineering the Pancreas Tumor Microenvironment: A ""Regenerative Program"" Hacked. Clin Cancer Res 23:1647-1655
Liu, Hao; Naxerova, Kamila; Pinter, Matthias et al. (2017) Use of Angiotensin System Inhibitors Is Associated with Immune Activation and Longer Survival in Nonmetastatic Pancreatic Ductal Adenocarcinoma. Clin Cancer Res 23:5959-5969
Gasser, Emanuel; Moutos, Christopher P; Downes, Michael et al. (2017) FGF1 - a new weapon to control type 2 diabetes mellitus. Nat Rev Endocrinol 13:599-609
Chen, Peiwen; Zuo, Hao; Xiong, Hu et al. (2017) Gpr132 sensing of lactate mediates tumor-macrophage interplay to promote breast cancer metastasis. Proc Natl Acad Sci U S A 114:580-585
Manoogian, Emily N C; Panda, Satchidananda (2017) Circadian rhythms, time-restricted feeding, and healthy aging. Ageing Res Rev 39:59-67
Fan, Weiwei; Waizenegger, Wanda; Lin, Chun Shi et al. (2017) PPAR? Promotes Running Endurance by Preserving Glucose. Cell Metab 25:1186-1193.e4
Tufail, Yusuf; Cook, Daniela; Fourgeaud, Lawrence et al. (2017) Phosphatidylserine Exposure Controls Viral Innate Immune Responses by Microglia. Neuron 93:574-586.e8
Li, Dongming; Palanca, Ana Marie S; Won, So Youn et al. (2017) The MBD7 complex promotes expression of methylated transgenes without significantly altering their methylation status. Elife 6:
Wu, Min-Zu; Cheng, Wei-Chung; Chen, Su-Feng et al. (2017) miR-25/93 mediates hypoxia-induced immunosuppression by repressing cGAS. Nat Cell Biol 19:1286-1296
Doktorova, Marcela; Zwarts, Irene; Zutphen, Tim van et al. (2017) Intestinal PPAR? protects against diet-induced obesity, insulin resistance and dyslipidemia. Sci Rep 7:846

Showing the most recent 10 out of 429 publications