(This Core was previously named the Gene Transfer, Targeting, and Therapeutics Core) Viral vectors are commonly used to deliver genetic material to targeted cells, both in vitro and in vivo. They also represent attractive candidates for in vivo gene therapy. However, there are significant safety concerns when working with and producing research grade viral vectors. These safety issues are compounded when individual research laboratories are tasked with establishing and maintaining their own safety infrastructure and protocols. To address these concerns, the Salk Institute has established a centralized resource, namely the Viral Vector Core. The Core produces and maintains an extensive library of commonly-used stock viral vectors. In addition, the Core offers custom design and production services for multiple types of viral vectors, including lentivirus, retrovirus, adenovirus, adeno-associated virus, G-deleted rabies, and vesicular stomatitis virus. Finally, the Core provides expert consultation services, helping researchers identify the viral vector tool best suited for their stated objectives, and teaching investigators how to safely handle and use viral vector technologies. Salk Cancer Center members have utilized both the custom and stock vector production services, as well as the NanoSight Particle Tracker, which is used to visualize and count nanoparticles such as viruses and exosomes. To help Salk Cancer Center members innovate new experimental tools and potential therapies, the Viral Vector Core constantly seeks to introduce novel viral vector technologies. Recent advances in viral vector design have produced new AAV capsids and lentivirus/retrovirus envelope proteins with enhanced infection and trafficking characteristics. The Core has incorporated these novel tools into Core offerings, making them available to Cancer Center researchers. Core staff have also introduced a self- inactivating rabies virus that has markedly less cytotoxicity, thus improving the utility of these vectors.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA014195-46
Application #
9634007
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2018-12-01
Budget End
2019-11-30
Support Year
46
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Salk Institute for Biological Studies
Department
Type
DUNS #
078731668
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Ogawa, Junko; Pao, Gerald M; Shokhirev, Maxim N et al. (2018) Glioblastoma Model Using Human Cerebral Organoids. Cell Rep 23:1220-1229
Ahmadian, Maryam; Liu, Sihao; Reilly, Shannon M et al. (2018) ERR? Preserves Brown Fat Innate Thermogenic Activity. Cell Rep 22:2849-2859
Benegiamo, Giorgia; Mure, Ludovic S; Erikson, Galina et al. (2018) The RNA-Binding Protein NONO Coordinates Hepatic Adaptation to Feeding. Cell Metab 27:404-418.e7
Sulli, Gabriele; Rommel, Amy; Wang, Xiaojie et al. (2018) Pharmacological activation of REV-ERBs is lethal in cancer and oncogene-induced senescence. Nature 553:351-355
Yoon, Young-Sil; Tsai, Wen-Wei; Van de Velde, Sam et al. (2018) cAMP-inducible coactivator CRTC3 attenuates brown adipose tissue thermogenesis. Proc Natl Acad Sci U S A 115:E5289-E5297
Xia, Yifeng; Zhan, Cheng; Feng, Mingxiang et al. (2018) Targeting CREB Pathway Suppresses Small Cell Lung Cancer. Mol Cancer Res 16:825-832
Stern, S; Santos, R; Marchetto, M C et al. (2018) Neurons derived from patients with bipolar disorder divide into intrinsically different sub-populations of neurons, predicting the patients' responsiveness to lithium. Mol Psychiatry 23:1453-1465
Limpert, Allison S; Lambert, Lester J; Bakas, Nicole A et al. (2018) Autophagy in Cancer: Regulation by Small Molecules. Trends Pharmacol Sci 39:1021-1032
Mure, Ludovic S; Le, Hiep D; Benegiamo, Giorgia et al. (2018) Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science 359:
Lu, Zhimin; Hunter, Tony (2018) Metabolic Kinases Moonlighting as Protein Kinases. Trends Biochem Sci 43:301-310

Showing the most recent 10 out of 457 publications