The Program in Nucleic Acid Biology focuses on mechanisms underlying DNA replication and mutagenesis as well as on the post-transcriptional regulation of gene expression by processes such as alternative splicing and microRNA function. The Program includes basic researchers interested in cell transformation and cancer who focus their work on a wide range of interrelated topics, including human genetics, DNA replication and repair, mRNA transcription and processing and gene regulation by endogenous or introduced non-coding RNAs. Program members share a common interest in the role of protein:nucleic acid interactions in regulating gene expression and cell growth. Although there is a significant interest in using prokaryotic model systems, the primary focus is on eukaryotic cells. Members interact through regularly scheduled research presentations, such as those sponsored by the Duke Center for RNA Biology, and through a wide range of relevant seminar presentations. Collaborations between members of the program, and particularly with other Cancer Center members, are numerous and productive. A new initiative relates to efforts to use RNA interference (RNAi) to study the role of specific viral and cellular gene products in the regulation of cell growth and transformation as well as to study the potentially critical role of the large endogenous family of non-coding RNA, termed microRNAs, in these processes. Co-leaders of the Program are Bryan R. Cullen, James B. Duke Professor of Molecular Genetics and Microbiology, and Mariano Garcia- Blanco, Professor of Molecular Genetics and Microbiology. The Program includes 21 members from 7 basic and clinical departments within Duke University.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA014236-40
Application #
8601802
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2014-01-01
Budget End
2014-12-31
Support Year
40
Fiscal Year
2014
Total Cost
$15,560
Indirect Cost
Name
Duke University
Department
Type
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Adams, Rebecca N; Mosher, Catherine E; Blair, Cindy K et al. (2015) Cancer survivors' uptake and adherence in diet and exercise intervention trials: an integrative data analysis. Cancer 121:77-83
Pruszynski, Marek; Koumarianou, Eftychia; Vaidyanathan, Ganesan et al. (2014) Improved tumor targeting of anti-HER2 nanobody through N-succinimidyl 4-guanidinomethyl-3-iodobenzoate radiolabeling. J Nucl Med 55:650-6
Batinic-Haberle, Ines; Tovmasyan, Artak; Roberts, Emily R H et al. (2014) SOD therapeutics: latest insights into their structure-activity relationships and impact on the cellular redox-based signaling pathways. Antioxid Redox Signal 20:2372-415
Sachdeva, Mohit; Mito, Jeffrey K; Lee, Chang-Lung et al. (2014) MicroRNA-182 drives metastasis of primary sarcomas by targeting multiple genes. J Clin Invest 124:4305-19
Tovmasyan, Artak; Carballal, Sebastian; Ghazaryan, Robert et al. (2014) Rational design of superoxide dismutase (SOD) mimics: the evaluation of the therapeutic potential of new cationic Mn porphyrins with linear and cyclic substituents. Inorg Chem 53:11467-83
Azrad, Maria; Demark-Wahnefried, Wendy (2014) The association between adiposity and breast cancer recurrence and survival: A review of the recent literature. Curr Nutr Rep 3:9-15
Blair, Cindy K; Madan-Swain, Avi; Locher, Julie L et al. (2013) Harvest for health gardening intervention feasibility study in cancer survivors. Acta Oncol 52:1110-8
Mito, Jeffrey K; Min, Hooney D; Ma, Yan et al. (2013) Oncogene-dependent control of miRNA biogenesis and metastatic progression in a model of undifferentiated pleomorphic sarcoma. J Pathol 229:132-40
Pruszynski, Marek; Koumarianou, Eftychia; Vaidyanathan, Ganesan et al. (2013) Targeting breast carcinoma with radioiodinated anti-HER2 Nanobody. Nucl Med Biol 40:52-9
Hover, Bradley M; Loksztejn, Anna; Ribeiro, Anthony A et al. (2013) Identification of a cyclic nucleotide as a cryptic intermediate in molybdenum cofactor biosynthesis. J Am Chem Soc 135:7019-32

Showing the most recent 10 out of 161 publications