The Pharmacogenomics and Experimental Therapeutics (PhET) Program is a cohesive, integrated group that brings together a diverse team of 48 members representing 9 different Departments. PhET interfaces with all of the other Programs to integrate fundamental cancer research with clinical care and clinical research objectives. The overall goal of the Program is to foster interaction between basic and clinical investigators, with a focus on pharmacogenomics and innovative molecular targets that are evaluated in the context of bio- or genetic- marker driven clinical trials at all phases of drug development, with the ultimate goal of developing innovative, personalized and effective therapies for cancer patients. The two program coleaders, M. Eileen Dolan, PhD, a laboratory-based scientist with experience in preclinical and translational studies, and Walter Stadler, MD, a physician-scientist with expertise in clinical trials and clinical drug development, work well together to promote the goals of the PhET Program. The Program's investigators have made major contributions including the identification of putative pharmacogenomic predictors of cancer therapeutic efficacy and toxicity, elucidation of predictive biomarkers of molecular pathway-directed therapy, and discovery of DNA repair mechanisms that have the potential for being therapeutic targets. Pharmacogenomic research within the program interfaces with basic research, translational, clinical and implementation science. The discoveries and contributions span the entire spectrum of translational research including classic """"""""bench-to-bedside"""""""" and """"""""bedside-to-bench"""""""" concepts (i.e., """"""""T1 translation""""""""), as well as translation from research to practice in what has been termed 'T2"""""""" translation or implementation science. The integrated scientific themes are: 1) Translational pharmacogenomic studies through pathway-directed as well as unbiased discovery approaches in model and clinical systems; 2) Development of novel therapeutic molecular targets, including angiogenesis, DNA repair, and defined molecular pathways; 3) Novel Phase I, II, and III biomarker-driven clinical trials, including the development of combined modality approaches, and novel clinical trial designs;and 4) Studies to incorporate biomarkers, and especially pharmacogenomic biomarkers, into clinical care.

Public Health Relevance

The Pharmacogenomics and Experimental Therapeutics program is the clinical and translational component of the University of Chicago Comprehensive Cancer Center and provides expertise in evaluation of molecular therapeutic targets to implementation in a clinical setting, with an emphasis on pharmacogenomics.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA014599-38
Application #
8486613
Study Section
Subcommittee G - Education (NCI)
Project Start
2013-04-01
Project End
2018-03-31
Budget Start
2013-04-23
Budget End
2014-03-31
Support Year
38
Fiscal Year
2013
Total Cost
$27,454
Indirect Cost
Name
University of Chicago
Department
Type
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Girard, Romuald; Zeineddine, Hussein A; Koskimäki, Janne et al. (2018) Plasma Biomarkers of Inflammation and Angiogenesis Predict Cerebral Cavernous Malformation Symptomatic Hemorrhage or Lesional Growth. Circ Res 122:1716-1721
Day, Kasey J; Casler, Jason C; Glick, Benjamin S (2018) Budding Yeast Has a Minimal Endomembrane System. Dev Cell 44:56-72.e4
Pu, Jinyue; Kentala, Kaitlin; Dickinson, Bryan C (2018) Multidimensional Control of Cas9 by Evolved RNA Polymerase-Based Biosensors. ACS Chem Biol 13:431-437
Pectasides, Eirini; Stachler, Matthew D; Derks, Sarah et al. (2018) Genomic Heterogeneity as a Barrier to Precision Medicine in Gastroesophageal Adenocarcinoma. Cancer Discov 8:37-48
Liu, Hongtao; Zha, Yuanyuan; Choudhury, Noura et al. (2018) WT1 peptide vaccine in Montanide in contrast to poly ICLC, is able to induce WT1-specific immune response with TCR clonal enrichment in myeloid leukemia. Exp Hematol Oncol 7:1
Nageeb, Shaheen; Vu, Milkie; Malik, Sana et al. (2018) Adapting a religious health fatalism measure for use in Muslim populations. PLoS One 13:e0206898
Ferreira, Caroline M; Williams, Jesse W; Tong, Jiankun et al. (2018) Allergen Exposure in Lymphopenic Fas-Deficient Mice Results in Persistent Eosinophilia Due to Defects in Resolution of Inflammation. Front Immunol 9:2395
Luke, Jason J; Lemons, Jeffrey M; Karrison, Theodore G et al. (2018) Safety and Clinical Activity of Pembrolizumab and Multisite Stereotactic Body Radiotherapy in Patients With Advanced Solid Tumors. J Clin Oncol 36:1611-1618
Wang, Amy Y; Weiner, Howard; Green, Margaret et al. (2018) A phase I study of selinexor in combination with high-dose cytarabine and mitoxantrone for remission induction in patients with acute myeloid leukemia. J Hematol Oncol 11:4
Sample, Ashley; He, Yu-Ying (2018) Mechanisms and prevention of UV-induced melanoma. Photodermatol Photoimmunol Photomed 34:13-24

Showing the most recent 10 out of 668 publications