The goal of the Tissue and Cell Molecular Analysis (TACMA) Shared Resource of the Mayo Clinic Cancer Center is to provide histological and related tissue-based services to Cancer Center investigators. The TACMA Shared Resource is a source of expertise and collaborative support for Cancer Center investigators, providing services for preparation of histology slides for microscopy, tissue microarray construction, immunostaining, digital image capture and analysis, laser capture microdissection, and preparation of tissues for subsequent nucleic acid or protein extraction. Since 2003, the number of Cancer Center members who have used services provided by the TACMA Shared Resource increased from 84 to 97 (15%). More importantly, the level of use of the four of the five major TACMA services by Cancer Center members increased 33%, 71%, 100%, and 209% and the other major service had modest growth of 7%. Cancer Center members continue to account for more than 50% of the total demand for each service offered by TACMA. This growth has been achieved by adding technical staff positions, by expanding hours of operation, and by purchasing additional equipment in order to increase our capacity for services in keeping with the demand for services. The services provided by the TACMA Shared Resource have been vital to cancer research at Mayo Clinic.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Mayo Clinic, Rochester
United States
Zip Code
Cooperberg, Matthew R; Davicioni, Elai; Crisan, Anamaria et al. (2015) Combined value of validated clinical and genomic risk stratification tools for predicting prostate cancer mortality in a high-risk prostatectomy cohort. Eur Urol 67:326-33
Bogenberger, James M; Delman, Devora; Hansen, Nanna et al. (2015) Ex vivo activity of BCL-2 family inhibitors ABT-199 and ABT-737 combined with 5-azacytidine in myeloid malignancies. Leuk Lymphoma 56:226-9
Sami, Sarmed S; Ragunath, Krish; Iyer, Prasad G (2015) Screening for Barrett's esophagus and esophageal adenocarcinoma: rationale, recent progress, challenges, and future directions. Clin Gastroenterol Hepatol 13:623-34
Fackler, Mary Jo; Lopez Bujanda, Zoila; Umbricht, Christopher et al. (2014) Novel methylated biomarkers and a robust assay to detect circulating tumor DNA in metastatic breast cancer. Cancer Res 74:2160-70
Porrata, Luis F; Ristow, Kay M; Habermann, Thomas M et al. (2014) Peripheral blood absolute lymphocyte/monocyte ratio during rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone treatment cycles predicts clinical outcomes in diffuse large B-cell lymphoma. Leuk Lymphoma 55:2728-38
Yoon, Harry H; Tougeron, David; Shi, Qian et al. (2014) KRAS codon 12 and 13 mutations in relation to disease-free survival in BRAF-wild-type stage III colon cancers from an adjuvant chemotherapy trial (N0147 alliance). Clin Cancer Res 20:3033-43
Espejo, Rosario; Jeng, Yowjiun; Paulucci-Holthauzen, Adriana et al. (2014) PTP-PEST targets a novel tyrosine site in p120 catenin to control epithelial cell motility and Rho GTPase activity. J Cell Sci 127:497-508
Banck, Michaela S; Beutler, Andreas S (2014) Advances in small bowel neuroendocrine neoplasia. Curr Opin Gastroenterol 30:163-7
Boland, Jennifer M; Wampfler, Jason A; Jang, Jin S et al. (2014) Pulmonary adenocarcinoma with signet ring cell features: a comprehensive study from 3 distinct patient cohorts. Am J Surg Pathol 38:1681-8
Imperiale, Thomas F; Ransohoff, David F; Itzkowitz, Steven H et al. (2014) Multitarget stool DNA testing for colorectal-cancer screening. N Engl J Med 370:1287-97

Showing the most recent 10 out of 340 publications