The Flow Cytometry/Optical Morphology Shared Resource of the Mayo Clinic Cancer Center (MCCC) provides instrumentation, expertise, and training related to these two areas. Flow cytometry is used for highspeed analysis and sorting of cells in liquid suspension. Optical morphology refers to techniques associated with light microscopy and image analysis. The flow cytometry area houses instruments of varying capabilities from a single laser bench-top analytical system to a five-laser, four-way cell sorter. Investigators, students, and technicians have the option of dropping off prepared samples to be run by resource personnel or to be trained to operate any of the five analytical flow cytometers. Resource personnel perform cell sorting. The optical morphology area houses a variety of light microscopy based instruments including laser scanning confocal microscopes and other upright and inverted light microscopes equipped with specialized components for optical sectioning, microinjection, ratiometric imaging, and total internal reflection fluorescence (TIRF). Training is provided for all of these microscopy techniques. Image analysis software including customized macro programming along with appropriate training is also available. Resource personnel are available to assist with training, troubleshooting, maintenance, data interpretation, and experimental design.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA015083-39
Application #
8465661
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2013-03-01
Budget End
2014-02-28
Support Year
39
Fiscal Year
2013
Total Cost
$120,533
Indirect Cost
$37,088
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Kurmi, Kiran; Hitosugi, Sadae; Yu, Jia et al. (2018) Tyrosine Phosphorylation of Mitochondrial Creatine Kinase 1 Enhances a Druggable Tumor Energy Shuttle Pathway. Cell Metab 28:833-847.e8
O'Mara, Tracy A; Glubb, Dylan M; Amant, Frederic et al. (2018) Identification of nine new susceptibility loci for endometrial cancer. Nat Commun 9:3166
Wallace, Sumer K; Halverson, Jessica W; Jankowski, Christopher J et al. (2018) Optimizing Blood Transfusion Practices Through Bundled Intervention Implementation in Patients With Gynecologic Cancer Undergoing Laparotomy. Obstet Gynecol 131:891-898
Shrestha, Shikshya; Zhang, Cheng; Jerde, Calvin R et al. (2018) Gene-Specific Variant Classifier (DPYD-Varifier) to Identify Deleterious Alleles of Dihydropyrimidine Dehydrogenase. Clin Pharmacol Ther 104:709-718
Hu, G; Dasari, S; Asmann, Y W et al. (2018) Targetable fusions of the FRK tyrosine kinase in ALK-negative anaplastic large cell lymphoma. Leukemia 32:565-569
Geller, James I; Fox, Elizabeth; Turpin, Brian K et al. (2018) A study of axitinib, a VEGF receptor tyrosine kinase inhibitor, in children and adolescents with recurrent or refractory solid tumors: A Children's Oncology Group phase 1 and pilot consortium trial (ADVL1315). Cancer 124:4548-4555
Luchtel, Rebecca A; Dasari, Surendra; Oishi, Naoki et al. (2018) Molecular profiling reveals immunogenic cues in anaplastic large cell lymphomas with DUSP22 rearrangements. Blood 132:1386-1398
Oishi, Naoki; Brody, Garry S; Ketterling, Rhett P et al. (2018) Genetic subtyping of breast implant-associated anaplastic large cell lymphoma. Blood 132:544-547
DuBois, Steven G; Mosse, Yael P; Fox, Elizabeth et al. (2018) Phase II Trial of Alisertib in Combination with Irinotecan and Temozolomide for Patients with Relapsed or Refractory Neuroblastoma. Clin Cancer Res 24:6142-6149
Farber, Benjamin A; Lalazar, Gadi; Simon, Elana P et al. (2018) Non coding RNA analysis in fibrolamellar hepatocellular carcinoma. Oncotarget 9:10211-10227

Showing the most recent 10 out of 1129 publications