Stress is a fundamental part of life for all cells and organisms and dealing successfully with stress facilitates survival in cells and whole organisms. Oncogenic transformation creates substantial intrinsic cell stress (e.g. metabolic, proteotoxic, DNA damage stresses). Tumor cells respond to intrinsic stress in numerous, highly conserved ways, some of which facilitate cell survival. Tumor growth may also cause changes in the microenvironment in which malignant cells develop - changes which add additional extrinsic stress factors (e.g. inflammation, hypoxia, high interstitial fluid pressure, nutritional deprivation, low pH). Finally, anticancer therapy adds to both intrinsic cell stress and may change the tumor microenvironment, modifying those stress factors, too. Cell Stress and Biophysical Therapies (CSBT) Program members are committed to understanding the mechanisms and responses in tumor cells which help them evade anticancer therapies as well as host antitumor responses. The overall goal of the CSBT Program is to identify, understand and exploit tumor cell stress and microenvironment mechanisms, and to use this to develop novel therapies. Members share interest in the imaging and therapy potential for modalities such as light, heat and ionizing radiation energies. There are three research themes in the program and each integrates basic, translational and clinical science: 1) Understanding intrinsic cancer cell stress mechanisms, 2) Understanding stress mechanisms in the host/tumor microenvironment and 3) Protecting normal cells/tissues from therapy-induced damage. The Program is co-led by Drs. Andrei Gudkov and Elizabeth Repasky each of whom has successful and complimentary research programs that span the themes of the program. Retreats and monthly program meetings focus on basic and translational research and discussions of new collaborations and clinical trial opportunities. Since the last review, the laboratories of the CSBT members have moved into closer proximity in the newly constructed Center for Genetics and Pharmacology. The program is comprised of 20 members from 8 different RPCI departments. Current annual total peer-reviewed program funding is $S.4M, of which $2.6M is NCI, and the total extramural research funding is $6.9M. Of the 353 publications of CSBT members over the last funding cycle, 21% are intra-programmatic and 20% are inter-programmatic. Importantly, the number of high impact papers (Impact Factor>10) has significantly increased (10 to 33) while at the same time, the major goal of developing new clinical trials emerging from research developed within the CSBT Program continues to be very strong and successful.

Public Health Relevance

It is now clear that the stress response in tumors, combined with stress-induced damage to normal tissues, are significant factors in therapeutic failure and tumor regrowth/metastasis. A more complete understanding of the mechanisms whereby stress, and stress responses increase the resistance of tumor cells to death, while exposing normal tissues to significant damage, will enable identification of new factors to target for blocking the responses and will increase tumor sensitivity to therapy.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA016056-37
Application #
8738360
Study Section
Subcommittee G - Education (NCI)
Project Start
1997-06-16
Project End
2019-04-30
Budget Start
2014-06-26
Budget End
2015-04-30
Support Year
37
Fiscal Year
2014
Total Cost
$37,715
Indirect Cost
$14,918
Name
Roswell Park Cancer Institute Corp
Department
Type
DUNS #
824771034
City
Buffalo
State
NY
Country
United States
Zip Code
14263
Wintrob, Zachary A P; Hammel, Jeffrey P; Nimako, George K et al. (2017) Insulin use, hormone receptor status and hematopoietic cytokines? circulation in women with diabetes mellitus and breast cancer. Data Brief 11:382-390
Murphy, Maureen E; Liu, Song; Yao, Song et al. (2017) A functionally significant SNP in TP53 and breast cancer risk in African-American women. NPJ Breast Cancer 3:5
Liu, Song; Kumari, Sangeeta; Hu, Qiang et al. (2017) A comprehensive analysis of coregulator recruitment, androgen receptor function and gene expression in prostate cancer. Elife 6:
Espinal, Allyson C; Buas, Matthew F; Wang, Dan et al. (2017) FOXA1 hypermethylation: link between parity and ER-negative breast cancer in African American women? Breast Cancer Res Treat 166:559-568
Danaher, Patrick; Warren, Sarah; Dennis, Lucas et al. (2017) Gene expression markers of Tumor Infiltrating Leukocytes. J Immunother Cancer 5:18
Oakley, Emily; Bellnier, David A; Hutson, Alan et al. (2017) Surface markers for guiding cylindrical diffuser fiber insertion in interstitial photodynamic therapy of head and neck cancer. Lasers Surg Med 49:599-608
Gage-Bouchard, Elizabeth A (2017) Social support, flexible resources, and health care navigation. Soc Sci Med 190:111-118
Moore, Kathleen N; Tritchler, David; Kaufman, Kenneth M et al. (2017) Genome-wide association study evaluating single-nucleotide polymorphisms and outcomes in patients with advanced stage serous ovarian or primary peritoneal cancer: An NRG Oncology/Gynecologic Oncology Group study. Gynecol Oncol 147:396-401
Szender, J Brian; Papanicolau-Sengos, Antonios; Eng, Kevin H et al. (2017) NY-ESO-1 expression predicts an aggressive phenotype of ovarian cancer. Gynecol Oncol 145:420-425
Ho, Christine M; McCarthy, Philip L; Wallace, Paul K et al. (2017) Immune signatures associated with improved progression-free and overall survival for myeloma patients treated with AHSCT. Blood Adv 1:1056-1066

Showing the most recent 10 out of 1391 publications