The OSUCCC Analytical Cytometry Shared Resource (ACSR) is an extensive, institutionally-supported shared service. This core provides one of the only means of rapidly and accurately analyzing multiple characteristics of biological particles while also being able to rapidly, accurately, and with high purity (>98%) sort out pure populations of cells of interest based on parameters designated by the investigator. Furthermore, this service provides OSUCCC members with the ability to obtain viable, sterile and pure populations of cells so that they may be individually cloned, can be assessed for immunological function, or can be examined for specific biochemical properties with minimal manipulations, compared to magnetic bead technologies. This shared resource has five primary goals: 1) Provide state of the art flow cytometry analysis and sorting on a fee-for-service basis;2) Provide individual training followed by 24-hour access to flow cytometry instrumentation for researchers who wish to conduct their own analysis;3) Develop and provide educational and training opportunities for new and experienced resource users as well as forums to introduce new instrumentation, technologies and reagents to OSUCCC investigators;4) Obtain and provide state-of-the-art equipment to support high quality cancer research for OSUCCC members;and 5) Introduce new, or pre-commercial, emerging technology to support high quality cancer research for OSUCCC members. The ACSR main facility is centrally located and has eight flow cytometry instruments, four of which are capable of sorting. Two flow cytometer analyzers are available for independent (24 hour access) and assisted analysis. In addition, commercial and prototype magnetic separation and analysis equipment is available. Five'of these instruments were purchased with institufional support of approximately $1,358,000 in the last four years. In order to meet the needs of heavy users and maintain adequate space and access, the ACSR has two satellite facilifies located in the James Cancer Hospital (JCH) and the OSU College of Veterinary Medicine (CVM). The CVM has three flow cytometers, one of which is equipped to safely sort virus infected cells. The ACSR Director is Jeffrey Chalmers, Ph.D. with a manager, Bryan McElwain, and two additional staff. The CVM satellite is managed by A. Nicole White and has an additional technician. In addition, this past year Mary Jo Burkhard, D.V.M., Ph.D. was recruited as a co-investigator in the ACSR focused on education and outreach. The ACSR continues to provide critical support to the investigators and scientific programs, including 14 clinical studies acfively using the services of the ACSR This past year, nearly 75% of the ACSR usage was from 63 CCSG peer-reviewed, funded OSUCCC investigators from all six programs who consumed over 4,300 hours of service, yet only 23.4% of the support came from the CCSG.

Public Health Relevance

The ACSR provides instrumentation and technical operation/support for cell identification, characterization and cell separation to OSUCCC members and the University community. The ACSR, through exceptional institutional support and experienced leadership, is designed to provide affordable and high quality service in each of these areas, based on a cost-effective charge-back system. This ACSR provides critical support to OSUCCC scientific programs and clinical studies, while contributing outstanding technical expertise to high quality scientific cancer research.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016058-37
Application #
8567275
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2012-12-01
Budget End
2013-11-30
Support Year
37
Fiscal Year
2013
Total Cost
$98,325
Indirect Cost
$33,851
Name
Ohio State University
Department
Type
DUNS #
832127323
City
Columbus
State
OH
Country
United States
Zip Code
43210
Norquist, Barbara M; Brady, Mark F; Harrell, Maria I et al. (2018) Mutations in Homologous Recombination Genes and Outcomes in Ovarian Carcinoma Patients in GOG 218: An NRG Oncology/Gynecologic Oncology Group Study. Clin Cancer Res 24:777-783
Zhang, Bin; Nguyen, Le Xuan Truong; Li, Ling et al. (2018) Bone marrow niche trafficking of miR-126 controls the self-renewal of leukemia stem cells in chronic myelogenous leukemia. Nat Med 24:450-462
Tasselli, Giorgia; Filippucci, Sara; Borsella, Elisabetta et al. (2018) Yeast lipids from cardoon stalks, stranded driftwood and olive tree pruning residues as possible extra sources of oils for producing biofuels and biochemicals. Biotechnol Biofuels 11:147
Moliva, J I; Hossfeld, A P; Canan, C H et al. (2018) Exposure to human alveolar lining fluid enhances Mycobacterium bovis BCG vaccine efficacy against Mycobacterium tuberculosis infection in a CD8+ T-cell-dependent manner. Mucosal Immunol 11:968-978
Suarez-Kelly, Lorena P; Akagi, Keiko; Reeser, Julie W et al. (2018) Metaplastic breast cancer in a patient with neurofibromatosis type 1 and somatic loss of heterozygosity. Cold Spring Harb Mol Case Stud 4:
Malpeli, Giorgio; Barbi, Stefano; Greco, Corinna et al. (2018) MicroRNA signatures and Foxp3+ cell count correlate with relapse occurrence in follicular lymphoma. Oncotarget 9:19961-19979
Talbert, Erin E; Lewis, Heather L; Farren, Matthew R et al. (2018) Circulating monocyte chemoattractant protein-1 (MCP-1) is associated with cachexia in treatment-naïve pancreatic cancer patients. J Cachexia Sarcopenia Muscle 9:358-368
Wang, Jin-Ting; Xie, Wen-Quan; Liu, Fa-Quan et al. (2018) NADH protect against radiation enteritis by enhancing autophagy and inhibiting inflammation through PI3K/AKT pathway. Am J Transl Res 10:1713-1721
Karpurapu, Manjula; Lee, Yong Gyu; Qian, Ziqing et al. (2018) Inhibition of nuclear factor of activated T cells (NFAT) c3 activation attenuates acute lung injury and pulmonary edema in murine models of sepsis. Oncotarget 9:10606-10620
Behnfeldt, Julia Harris; Acharya, Samir; Tangeman, Larissa et al. (2018) A tri-serine cluster within the topoisomerase II?-interaction domain of the BLM helicase is required for regulating chromosome breakage in human cells. Hum Mol Genet 27:1241-1251

Showing the most recent 10 out of 2602 publications