The Biological Macromolecule Shared Resource (BMSR) represents a consolidation of services previously offered by the Molecular Biology and the Virus Vector shared resources, with the addition of a new service for recombinant protein production and purification. The overall goal of the BMSR is to facilitate and implement multiple end-points, both those within this shared resource, and those involving interfacing with other shared resources. These include the production of research grade virus particles, knock-in/knock-out mice (in collaboration with the Transgenic/Knockout Mouse Shared Resource), knock-in/knock-out somatic cell lines using homologous recombination, transient and stable protein expression in mammalian cells, recombinant protein production (bacterial, yeast, insect, and mammalian systems) and purification for structural analysis (in collaboration with the Structural Biology Shared Resource), and for protein interaction studies using the Biacore instrumentation located in the Flow Cytometry shared resource. In addition to moving vectors provided by investigators towards these end points, we offer design, construction and validation services for the generation of new vectors. The BMSR is co-directed by Dr Shirley Taylor (CMG), who brings molecular biology, cell culture, and protein expression experience, and Dr Darrell Peterson (Department of Biochemistry and Molecular Biology) a protein biochemist with extensive experience in protein production and purification. The BMSR employs a Resource Manager (Ms Kimberly Stratton, MS) and two full time research specialists, each of whom takes primary responsibility for one of the three major areas, but with sufficient cross-training in ail services offered to ensure continuity and maximal efficiency. The BMSR generally operates at >85% capacity, serving a wide range of investigators both within the Virginia Commonwealth University (VCU) Massey Cancer Center (MCC), and from the VCU research community. For the period January 1 2008 through December 31, 2010, MCC members with peer-reviewed funding accounted for approximately 70% of basic services and special projects. In CY 2010 the virus vector services of the BMSR served five funded MCC investigators, and three non-MCC investigators. Since its inception in January 2010, the Protein Production facility has served five funded MCC investigators and two non-MCC investigators, on ten separate projects. The BMSR served 22 peer-reviewed funded MCC investigators in routine services and special projects and 15 non-MCC investigators.

Public Health Relevance

The Biological Macromolecule Shared Resource assists MCC investigators in creating both DNA and protein molecules which in turn are used to study the molecular nature of cancer. Molecular manipulation provides the tools by which individual genes and proteins can be studied at the cellular and organismal levels. The production of purified protein allows investigators to determine the structure of cancer-related molecules, which in turn lends itself to understanding how the proteins can be manipulated to control cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016059-32
Application #
8559564
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
32
Fiscal Year
2013
Total Cost
$37,632
Indirect Cost
Name
Virginia Commonwealth University
Department
Type
DUNS #
105300446
City
Richmond
State
VA
Country
United States
Zip Code
23298
Radwa?ska, Malwina J; Jaskó?owski, Mateusz; Davydova, Elena et al. (2018) The structure of the C-terminal domain of the nucleoprotein from the Bundibugyo strain of the Ebola virus in complex with a pan-specific synthetic Fab. Acta Crystallogr D Struct Biol 74:681-689
Curry, Zachary A; Wilkerson, Jenny L; Bagdas, Deniz et al. (2018) Monoacylglycerol Lipase Inhibitors Reverse Paclitaxel-Induced Nociceptive Behavior and Proinflammatory Markers in a Mouse Model of Chemotherapy-Induced Neuropathy. J Pharmacol Exp Ther 366:169-183
Lancina 3rd, Michael G; Wang, Juan; Williamson, Geoffrey S et al. (2018) DenTimol as A Dendrimeric Timolol Analogue for Glaucoma Therapy: Synthesis and Preliminary Efficacy and Safety Assessment. Mol Pharm 15:2883-2889
Ginder, Gordon D; Williams Jr, David C (2018) Readers of DNA methylation, the MBD family as potential therapeutic targets. Pharmacol Ther 184:98-111
Karandashova, Sophia; Kummarapurugu, Apparao B; Zheng, Shuo et al. (2018) Neutrophil elastase increases airway ceramide levels via upregulation of serine palmitoyltransferase. Am J Physiol Lung Cell Mol Physiol 314:L206-L214
Vascak, Michal; Jin, Xiaotao; Jacobs, Kimberle M et al. (2018) Mild Traumatic Brain Injury Induces Structural and Functional Disconnection of Local Neocortical Inhibitory Networks via Parvalbumin Interneuron Diffuse Axonal Injury. Cereb Cortex 28:1625-1644
Chernoukhov, A; Hussein, A; Nkurunziza, S et al. (2018) Bayesian inference in time-varying additive hazards models with applications to disease mapping. Environmetrics 29:
Dai, Lu; Smith, Charles D; Foroozesh, Maryam et al. (2018) The sphingosine kinase 2 inhibitor ABC294640 displays anti-non-small cell lung cancer activities in vitro and in vivo. Int J Cancer 142:2153-2162
Iqbal, Emil S; Dods, Kara K; Hartman, Matthew C T (2018) Ribosomal incorporation of backbone modified amino acids via an editing-deficient aminoacyl-tRNA synthetase. Org Biomol Chem 16:1073-1078
Meader, Victoria Kathryn; John, Mallory G; Frias Batista, Laysa M et al. (2018) Radical Chemistry in a Femtosecond Laser Plasma: Photochemical Reduction of Ag? in Liquid Ammonia Solution. Molecules 23:

Showing the most recent 10 out of 586 publications