The Virginia Commonwealth University (VCU) Massey Cancer Center (MCC) places a high priority on translating the research that arises from each of its programs into pilot and Phase I clinical trials. Recent positive actions to formalize and accelerate translation of pre-clinical science have resulted in an increase in the number of early phase clinical investigator-initiated clinical trials developed at MCC. Support for these trials is available through three Clinical Research Nurses and two Data Managers, each of whom has experience in early phase trials. Solicited concepts from the MCC membership are prioritized by a committee composed of senior leaders and clinical trial experts. Concepts identified by this process are considered """"""""high priority"""""""" for rapid translation to the clinic. The development of high priority studies is then facilitated by the assignment of a Clinical Research Nurse to the study team during the early stages of the protocol development. Once the protocol is approved, both the Clinical Research Nurse and the Data Manager provide continuing support.

Public Health Relevance

The performance of high quality pilot and Phase I clinical trials requires a strong study team including Clinical Research Nurses and Data Managers. The Protocol Specific Research Support component of the CCSG supports three experienced Research Nurses and two Data Managers who are dedicated to Phase I and II cancer clinical trials.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016059-33
Application #
8662720
Study Section
Subcommittee B - Comprehensiveness (NCI)
Project Start
Project End
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
33
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Virginia Commonwealth University
Department
Type
DUNS #
City
Richmond
State
VA
Country
United States
Zip Code
23298
Ding, Boxiao; Parmigiani, Anita; Divakaruni, Ajit S et al. (2016) Sestrin2 is induced by glucose starvation via the unfolded protein response and protects cells from non-canonical necroptotic cell death. Sci Rep 6:22538
Terracina, Krista P; Graham, Laura J; Payne, Kyle K et al. (2016) DNA methyltransferase inhibition increases efficacy of adoptive cellular immunotherapy of murine breast cancer. Cancer Immunol Immunother 65:1061-73
Alotaibi, Moureq; Sharma, Khushboo; Saleh, Tareq et al. (2016) Radiosensitization by PARP Inhibition in DNA Repair Proficient and Deficient Tumor Cells: Proliferative Recovery in Senescent Cells. Radiat Res 185:229-45
Truchan, Hilary K; Cockburn, Chelsea L; Hebert, Kathryn S et al. (2016) The Pathogen-Occupied Vacuoles of Anaplasma phagocytophilum and Anaplasma marginale Interact with the Endoplasmic Reticulum. Front Cell Infect Microbiol 6:22
Menezes, M E; Das, S K; Minn, I et al. (2016) Detecting Tumor Metastases: The Road to Therapy Starts Here. Adv Cancer Res 132:1-44
Agarwal, Stuti; Bell, Catherine M; Taylor, Shirley M et al. (2016) p53 Deletion or Hotspot Mutations Enhance mTORC1 Activity by Altering Lysosomal Dynamics of TSC2 and Rheb. Mol Cancer Res 14:66-77
Gewirtz, David A (2016) The Challenge of Developing Autophagy Inhibition as a Therapeutic Strategy. Cancer Res 76:5610-5614
Lafata, Jennifer Elston; Shay, L Aubree; Brown, Richard et al. (2016) Office-Based Tools and Primary Care Visit Communication, Length, and Preventive Service Delivery. Health Serv Res 51:728-45
Korwar, Sudha; Morris, Benjamin L; Parikh, Hardik I et al. (2016) Design, synthesis, and biological evaluation of substrate-competitive inhibitors of C-terminal Binding Protein (CtBP). Bioorg Med Chem 24:2707-15
Ge, Xiuchun; Shi, Xiaoli; Shi, Limei et al. (2016) Involvement of NADH Oxidase in Biofilm Formation in Streptococcus sanguinis. PLoS One 11:e0151142

Showing the most recent 10 out of 413 publications