Structural Biology Core Facility The Structural Biology Core is a 'super core'that provides an integrated platform of expertise, education, and infrastructure to make structural biology available as tools to LCCC researchers. The Core allows engaging in high-resolution studies using X-ray crystallography, multi-dimensional nuclear magnetic resonance spectroscopy and/or computational methods. The Core offers access to equipment for, and expert guidance of users through, all stages of structure determination projects: homology modeling, construct design, protein expression &purification, crystallization, structure determination, structure analysis, biophysical studies, molecular dynamics studies, presentation &publication. The utility of the available resources is demonstrated by numerous structural studies that contribute to the understanding of cancer-related processes at the atomic level and that can be used to develop potential new therapies through structure aided drug design. The Core is led by a team of highly experienced structural biologists with proven track records in cancer-related research In 2009, 32 LCCC members, all peer-reviewed accounted for 82% of total Core use.. With the recruitment of a director for the Core, Dr. Machius, in the summer of 2009, there has been a reorganization of the facilities, together with substantial renovations and equipment acquisition. As a result of the expanded services and increased demand, the number of projects is increasing sharply. Additional personnel are required to fulfill the needs of LCCC members. Renovations are currently underway to consolidate the Structural Biology facilities into contiguous space, providing a single point of access to resources and allowing for fighter integration of equipment and personnel. Also, an efficient interface is being formed between the Structural Biology Core and the Center for Integrative Chemical Biology and Drug Discovery (directed by Dr. Stephen Frye), which will establish a comprehensive pipeline available to LCCC members for the development of novel anti-cancer drugs based on insights gained from structural biology projects. For 2010, the LCCC requests $119,367, an increase of 29% for additional personnel). CCSG funds are projected to be 15% of operating costs.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016086-36
Application #
8376350
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2011-12-01
Budget End
2012-11-30
Support Year
36
Fiscal Year
2012
Total Cost
$219,024
Indirect Cost
$76,453
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Ziehr, Benjamin; Vincent, Heather A; Moorman, Nathaniel J (2016) Human Cytomegalovirus pTRS1 and pIRS1 Antagonize Protein Kinase R To Facilitate Virus Replication. J Virol 90:3839-48
Xiao, Ping-Jie; Mitchell, Angela M; Huang, Lu et al. (2016) Disruption of Microtubules Post-Virus Entry Enhances Adeno-Associated Virus Vector Transduction. Hum Gene Ther 27:309-24
White, Alexandra J; Bradshaw, Patrick T; Herring, Amy H et al. (2016) Exposure to multiple sources of polycyclic aromatic hydrocarbons and breast cancer incidence. Environ Int 89-90:185-92
Xu, Yang; Chaudhury, Arindam; Zhang, Ming et al. (2016) Glycolysis determines dichotomous regulation of T cell subsets in hypoxia. J Clin Invest 126:2678-88
He, Zhijian; Wan, Xiaomeng; Schulz, Anita et al. (2016) A high capacity polymeric micelle of paclitaxel: Implication of high dose drug therapy to safety and in vivo anti-cancer activity. Biomaterials 101:296-309
Moracco, Kathryn E; Morgan, Jennifer C; Mendel, Jennifer et al. (2016) "My First Thought was Croutons": Perceptions of Cigarettes and Cigarette Smoke Constituents Among Adult Smokers and Nonsmokers. Nicotine Tob Res 18:1566-74
Park, Eliza M; Deal, Allison M; Check, Devon K et al. (2016) Parenting concerns, quality of life, and psychological distress in patients with advanced cancer. Psychooncology 25:942-8
Ohkuni, Kentaro; Takahashi, Yoshimitsu; Fulp, Alyona et al. (2016) SUMO-Targeted Ubiquitin Ligase (STUbL) Slx5 regulates proteolysis of centromeric histone H3 variant Cse4 and prevents its mislocalization to euchromatin. Mol Biol Cell :
Becker, Marc A; Ibrahim, Yasir H; Oh, Annabell S et al. (2016) Insulin Receptor Substrate Adaptor Proteins Mediate Prognostic Gene Expression Profiles in Breast Cancer. PLoS One 11:e0150564
Sin, Sang-Hoon; Kang, Sun Ah; Kim, Yongbaek et al. (2016) Kaposi's Sarcoma-Associated Herpesvirus Latency Locus Compensates for Interleukin-6 in Initial B Cell Activation. J Virol 90:2150-4

Showing the most recent 10 out of 897 publications