Next Generation Sequencing and Genotyping Core Facility. The goal of the Next Gen Sequencing component is to make next generation sequencing and related services widely available to UNC LCCC members at cost-effective prices. Services include: whole genome shotgun sequencing of human and model organisms, chromatin-IP sample sequencing, measuring RNA expression with both digital gene expression and RNA-seq, SNP typing, and polymorphism screens. The component adds value to the cancer center by putting complex and expensive DNA/RNA sequencing technology within easy reach of UNC LCCC members. Strongly integrated genomics and bioinformatics groups interact with the user to ensure robust data that is archived appropriately for future use. This component is key in UNC LCCC's participation in The Cancer Genome Atlas project and serving LCCC needs. Future plans Include expanding staff and equipment so that a full array of Next Gen sequencing and services may be provided in a timely manner, as well as the acquisition of the next generation of technology. The goal of the DNA Sequencing component is to produce high quality sequencing and genotyping data rapidly and at a reasonable cost for UNC-CH researchers using state-of-the-art technologies as well as provide technical support to enhance the value of results produced. Services include DNA sequencing and microsatellite genotyping. The component adds value to the cancer center by producing high-quality data at a competitive price while providing the benefits of a local resource to assist in: scientific strategies, sample preparation, sequencing through difficult regions, and assistance in data interpretation. This component has a wide user base with over 220 different laboratories as users in 2009. Future plans include continued use of existing equipment, reduction of chemistry costs, and evaluation of future sequencing technology options such as long read single molecule sequencing technologies. The goal of the High Throughput Genotyping component is to produce high-quality genotyping data rapidly and at a reasonable cost for researchers using state-of-the-art technologies. Services include SNP genotyping, copy number variation and DNA methylation profiling analysis. New technologies and/or applications are being explored to increase the core's competitive edge and to allow for Genome Wide Association Study on rare variants. These core components are used by multiple members and in each core, peer reviewed member used exceeds 70%. The proposed budget of $241,797 is less than 5% of the core's operating cost. The budget provides salary stability for vital core staff who work with members to adopt these novel technologies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016086-39
Application #
8786524
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2014-12-01
Budget End
2015-11-30
Support Year
39
Fiscal Year
2015
Total Cost
$266,981
Indirect Cost
$73,405
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Shen, Hui; Shih, Juliann; Hollern, Daniel P et al. (2018) Integrated Molecular Characterization of Testicular Germ Cell Tumors. Cell Rep 23:3392-3406
Shao, Wenwei; Chen, Xiaojing; Samulski, Richard J et al. (2018) Inhibition of antigen presentation during AAV gene therapy using virus peptides. Hum Mol Genet 27:601-613
Gao, Yanzhe; Kardos, Jordan; Yang, Yang et al. (2018) The Cancer/Testes (CT) Antigen HORMAD1 promotes Homologous Recombinational DNA Repair and Radioresistance in Lung adenocarcinoma cells. Sci Rep 8:15304
Schaefer, Kristina N; Bonello, Teresa T; Zhang, Shiping et al. (2018) Supramolecular assembly of the beta-catenin destruction complex and the effect of Wnt signaling on its localization, molecular size, and activity in vivo. PLoS Genet 14:e1007339
Zuze, Takondwa; Painschab, Matthew S; Seguin, Ryan et al. (2018) Plasmablastic lymphoma in Malawi. Infect Agent Cancer 13:22
Wang, Jeremy R; Holt, James; McMillan, Leonard et al. (2018) FMLRC: Hybrid long read error correction using an FM-index. BMC Bioinformatics 19:50
Lee, Janie M; Abraham, Linn; Lam, Diana L et al. (2018) Cumulative Risk Distribution for Interval Invasive Second Breast Cancers After Negative Surveillance Mammography. J Clin Oncol 36:2070-2077
Thomas, Nancy E; Edmiston, Sharon N; Orlow, Irene et al. (2018) Inherited Genetic Variants Associated with Melanoma BRAF/NRAS Subtypes. J Invest Dermatol 138:2398-2404
Cousins, Emily M; Goldfarb, Dennis; Yan, Feng et al. (2018) Competitive Kinase Enrichment Proteomics Reveals that Abemaciclib Inhibits GSK3? and Activates WNT Signaling. Mol Cancer Res 16:333-344
Armstrong, Robin L; Penke, Taylor J R; Strahl, Brian D et al. (2018) Chromatin conformation and transcriptional activity are permissive regulators of DNA replication initiation in Drosophila. Genome Res 28:1688-1700

Showing the most recent 10 out of 1525 publications