The primary goals of the Molecular Therapeutics (MT) Program are to study and evaluate cancer targets, develop novel chemical probes that will lead to new therapies, and devise more effective delivery systems to treat cancer. MT has highly integrated basic science and translational themes in five areas: chemical and structural biology; drug discovery and development; drug delivery and nanotechnology; systems pharmacology; and oncogenic signaling. MTs objective is to combine these elements to develop novel therapeutics and to translate innovative discoveries into applications relevant to LCCC-initiated human trials. Interactions of MT?s members with LCCC basic, translational and clinical faculty enables many of the scientific steps needed for the discovery and development of promising therapies. This includes: (1) Discovery and validation of new targets for cancer therapies, (2) Development of chemical probes to modulate and further validate identified targets, (3) Development of faithful animal cancer models for the testing of novel therapeutics, (4) Discovery and application of novel surface chemistry and nanoparticle synthesis for delivery and formulation of promising therapeutics, (5) Characterization of PK/PD of novel therapeutics involving preclinical models and patient clinical trials. The focused development of MT during the past five years provides the requisite infrastructure and knowledge-base to truly do drug discovery in an academic setting. A major strength of the program has been the enhancement of chemical biology that has benefited virtually everyone involved in cancer research at UNC and in the Cancer Center. Examples of this success are represented by LCCC investigator lead startups developing clinical-candidate MER inhibitors with potent anti- tumor activity entering phase 1 trials, and the discovery of pharmacological quiescence where a lead compound will begin Phase II testing in small cell lung cancer in early 2015. Leadership for Molecular Therapeutics is provided by Stephen Frye, Director of the Center for Integrative Chemical Biology and Drug Discovery (CICBDD) and Fred Eshelman Distinguished Professor in the UNC School of Pharmacy and Gary Johnson, the Kenan Distinguished Professor and Chair of the Department of Pharmacology in the School of Medicine. The program fosters a strong integrated research effort through the establishment, use and advancement of core facilities and promoting highly interactive collaborations with Cancer Center investigators. The Molecular Therapeutics Program consists of 42 members associated with the Schools of Medicine, Pharmacy and Arts & Sciences. During the last funding period, program members have published 700 cancer- related articles (30% collaborative). In 2014, our program members held 89 grants and $22M (total cost) in annual extramural funding, including 36 grants and $8.8M (total costs) from the NCI.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016086-43
Application #
9614924
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2018-12-01
Budget End
2019-11-30
Support Year
43
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Shen, Hui; Shih, Juliann; Hollern, Daniel P et al. (2018) Integrated Molecular Characterization of Testicular Germ Cell Tumors. Cell Rep 23:3392-3406
Shao, Wenwei; Chen, Xiaojing; Samulski, Richard J et al. (2018) Inhibition of antigen presentation during AAV gene therapy using virus peptides. Hum Mol Genet 27:601-613
Gao, Yanzhe; Kardos, Jordan; Yang, Yang et al. (2018) The Cancer/Testes (CT) Antigen HORMAD1 promotes Homologous Recombinational DNA Repair and Radioresistance in Lung adenocarcinoma cells. Sci Rep 8:15304
Schaefer, Kristina N; Bonello, Teresa T; Zhang, Shiping et al. (2018) Supramolecular assembly of the beta-catenin destruction complex and the effect of Wnt signaling on its localization, molecular size, and activity in vivo. PLoS Genet 14:e1007339
Zuze, Takondwa; Painschab, Matthew S; Seguin, Ryan et al. (2018) Plasmablastic lymphoma in Malawi. Infect Agent Cancer 13:22
Wang, Jeremy R; Holt, James; McMillan, Leonard et al. (2018) FMLRC: Hybrid long read error correction using an FM-index. BMC Bioinformatics 19:50
Lee, Janie M; Abraham, Linn; Lam, Diana L et al. (2018) Cumulative Risk Distribution for Interval Invasive Second Breast Cancers After Negative Surveillance Mammography. J Clin Oncol 36:2070-2077
Thomas, Nancy E; Edmiston, Sharon N; Orlow, Irene et al. (2018) Inherited Genetic Variants Associated with Melanoma BRAF/NRAS Subtypes. J Invest Dermatol 138:2398-2404
Cousins, Emily M; Goldfarb, Dennis; Yan, Feng et al. (2018) Competitive Kinase Enrichment Proteomics Reveals that Abemaciclib Inhibits GSK3? and Activates WNT Signaling. Mol Cancer Res 16:333-344
Armstrong, Robin L; Penke, Taylor J R; Strahl, Brian D et al. (2018) Chromatin conformation and transcriptional activity are permissive regulators of DNA replication initiation in Drosophila. Genome Res 28:1688-1700

Showing the most recent 10 out of 1525 publications