The purpose of the Microscopy, Imaging and Cytometry Resources (MICR) Core is to enhance the peer reviewed funded research activities of KCI members whose research requires confocal microscopy, flow cytometry, small animal imaging and related techniques. To this end, during the current funding period the Core has facilitated 92 peer-reviewed publications by the cancer center members. The MICR Core is grouped in the Basic Research Core Cluster which, in addition to the MICR Core, includes the Proteomics and the Animal Model and Therapeutics Evaluation Cores. Capabilities and services include: confocal microscopy, multiphoton microscopy, conventional light microscopy, FRET and FRAP, TIRF and Atomic Force Microscopy, in vivo small animal imaging (including SPECT, CT, PET, x-ray, and optical imaging), flow cytometry and ratiometric analyses (e.g., intracellular pH and ion measurement studies), as well as three- and four- dimensional image reconstruction and quantitative measurements. MR imaging is also available through a collaborative effort between MICR and the MR Center. Our advanced imaging systems consist of a Zeiss LSM 410 confocal microscope equipped with six laser lines, a PerkinElmer UltraView ERS spinning disk confocal microscope equipped with three laser lines, a Zeiss LSM-510 META NLO confocal microscope with eight laser lines and multiphoton imaging, a Leica TCS-SP5 MP equipped with nine laser lines and multiphoton capability, a newly acquired Olympus/Bruker TIRF/AFM custom microscope and the cutting-edge Zeiss LSM 780 confocal microscope with six conventional laser lines and the InTune laser, a tunable white light laser with over 200 laser lines. Our flow cytometry systems include Becton Dickinson (BD) LSR II and BD FACSCanto II flow cytometers, a BD FACS Vantage SE SORP cell sorter and the newly acquired Amnis ImageStreamX Mark II imaging flow cytometer. The facility also provides conventional fluorescent microscopy through a Zeiss Axiophot Triple-Camera Photomicroscope, a Zeiss live cell imaging microscope with the state-of-the-art Apotome module capable of four dimensional imaging (3D in time). The in vivo small animal imaging unit is a newly upgraded combination of technologies made available to the core through the addition of Bruker In Vivo Extreme and MS FX Pro small animal optical/x-ray imagers, Siemens Inveon SPECT/CT and Concord MicroPET R4 small animal scanners. As mentioned above, small animal MRI is also available through collaborative efforts between MICR and the MR Center located next door. The analytical systems of the MICR Core include eight Apple and PC workstations with various analytical software and photographic quality printers and the MIP, Molecular Imaging Portal. MIP is a UNIX based central server with 45 TB storage capacity and a 74 TB robotic tape backup system as well as a dedicated applications server hosting the advance image analysis software, Matlab? and Definiens?, with two licenses each allowing up to two users access to each software simultaneously.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA022453-37
Application #
9605739
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2018-12-01
Budget End
2019-11-30
Support Year
37
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Wayne State University
Department
Type
DUNS #
001962224
City
Detroit
State
MI
Country
United States
Zip Code
48202
Burl, Rayanne B; Ramseyer, Vanesa D; Rondini, Elizabeth A et al. (2018) Deconstructing Adipogenesis Induced by ?3-Adrenergic Receptor Activation with Single-Cell Expression Profiling. Cell Metab 28:300-309.e4
Dedigama-Arachchige, Pavithra M; Acharige, Nuwan P N; Pflum, Mary Kay H (2018) Identification of PP1-Gadd34 substrates involved in the unfolded protein response using K-BIPS, a method for phosphatase substrate identification. Mol Omics 14:121-133
Desai, Pinkal; Wallace, Robert; Anderson, Matthew L et al. (2018) An analysis of the association between statin use and risk of endometrial and ovarian cancers in the Women's Health Initiative. Gynecol Oncol 148:540-546
Thakur, Manish K; Ruterbusch, Julie J; Schwartz, Ann G et al. (2018) Risk of Second Lung Cancer in Patients with Previously Treated Lung Cancer: Analysis of Surveillance, Epidemiology, and End Results (SEER) Data. J Thorac Oncol 13:46-53
Ma, Huiyan; Ursin, Giske; Xu, Xinxin et al. (2018) Body mass index at age 18 years and recent body mass index in relation to risk of breast cancer overall and ER/PR/HER2-defined subtypes in white women and African-American women: a pooled analysis. Breast Cancer Res 20:5
Mitrea, Cristina; Wijesinghe, Priyanga; Dyson, Greg et al. (2018) Integrating 5hmC and gene expression data to infer regulatory mechanisms. Bioinformatics 34:1441-1447
Simon, Michael S; Beebe-Dimmer, Jennifer L; Hastert, Theresa A et al. (2018) Cardiometabolic risk factors and survival after breast cancer in the Women's Health Initiative. Cancer 124:1798-1807
Luca, Francesca; Kupfer, Sonia S; Knights, Dan et al. (2018) Functional Genomics of Host-Microbiome Interactions in Humans. Trends Genet 34:30-40
Hastert, T A; de Oliveira Otto, M C; Lê-Scherban, F et al. (2018) Association of plasma phospholipid polyunsaturated and trans fatty acids with body mass index: results from the Multi-Ethnic Study of Atherosclerosis. Int J Obes (Lond) 42:433-440
Bock, Cathryn H; Jay, Allison M; Dyson, Gregory et al. (2018) The effect of genetic variants on the relationship between statins and breast cancer in postmenopausal women in the Women's Health Initiative observational study. Breast Cancer Res Treat 167:741-749

Showing the most recent 10 out of 826 publications