The Center for Cancer Research's Proteomics Shared Resource is a new Shared Resource that combines various proteomic services (global proteomic, protein identification, and single protein analysis) in a single facility to better serve the needs of the Center for Cancer Research members. The Proteomics Shared Resource is distinguished from the Mass Spectrometry Shared Resource, which focuses on the analysis of small organic compounds to primarily support chemistry-driven projects in the Medicinal Chemistry and Drug Delivery and Molecular Sensing scientific programs. The advanced instrumentation in the Proteomic Shared Resource supports: 1) the high throughput analysis of biological fluids and tissue extracts;2) the identification of proteins in cellular complexes;and 3) the analysis of protein modifications. The Shared Resource is directed by Dr. Fred Regnier, the J. H. Law Distinguished Professor of Chemistry who has over 30 years experience as a leader in the field of applied mass spectrometry technology. Dr. Regnier is ideally suited to direct this new Shared Resource and to guide and facilitate new avenues of investigation by Center for Cancer Research members who may not be familiar with the capabilities the instrumentation the new facility offers.

Public Health Relevance

The role of the shared resource is to assist individual investigators and scientific Programs within the Center that are seeking novel approaches to addressing a variety of cancer-related issues. In offering these key services, the shared resource provides the expertise necessary for achieving the next challenge;challenges that when solved will aid in reducing the pain and suffering of cancer.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Purdue University
West Lafayette
United States
Zip Code
Krisenko, Mariya O; Cartagena, Alexander; Raman, Arvind et al. (2015) Nanomechanical property maps of breast cancer cells as determined by multiharmonic atomic force microscopy reveal Syk-dependent changes in microtubule stability mediated by MAP1B. Biochemistry 54:60-8
Cho, Eun Jung; Sun, Bo; Doh, Kyung-Oh et al. (2015) Intraperitoneal delivery of platinum with in-situ crosslinkable hyaluronic acid gel for local therapy of ovarian cancer. Biomaterials 37:312-9
Bai, Yu; Davis, Dexter C; Dai, Mingji (2014) Synthesis of tetrahydropyran/tetrahydrofuran-containing macrolides by palladium-catalyzed alkoxycarbonylative macrolactonizations. Angew Chem Int Ed Engl 53:6519-22
Chao, Chi-Hong; Chang, Chao-Ching; Wu, Meng-Ju et al. (2014) MicroRNA-205 signaling regulates mammary stem cell fate and tumorigenesis. J Clin Invest 124:3093-106
Lee, Kyuwan; Cui, Yi; Lee, Luke P et al. (2014) Quantitative imaging of single mRNA splice variants in living cells. Nat Nanotechnol 9:474-80
Yang, Yang; Haskins, Christopher W; Zhang, Wandi et al. (2014) Divergent total syntheses of lyconadins A and C. Angew Chem Int Ed Engl 53:3922-5
Ghosh, Arun K; Osswald, Heather L (2014) BACE1 (?-secretase) inhibitors for the treatment of Alzheimer's disease. Chem Soc Rev 43:6765-813
Byun, Alexander J; Hung, Kenneth E; Fleet, James C et al. (2014) Colon-specific tumorigenesis in mice driven by Cre-mediated inactivation of Apc and activation of mutant Kras. Cancer Lett 347:191-5
Emmert, Dana; Campos, Christopher R; Ward, David et al. (2014) Reversible dimers of the atypical antipsychotic quetiapine inhibit p-glycoprotein-mediated efflux in vitro with increased binding affinity and in situ at the blood-brain barrier. ACS Chem Neurosci 5:305-17
Hrycyna, Christine A; Summers, Robert L; Lehane, Adele M et al. (2014) Quinine dimers are potent inhibitors of the Plasmodium falciparum chloroquine resistance transporter and are active against quinoline-resistant P. falciparum. ACS Chem Biol 9:722-30

Showing the most recent 10 out of 109 publications