The overall goal of the Signal Transduction Program (STP) is to elucidate the mechanisms that govern activation and repression of signaling cascades during normal development, neoplastic transformation and tumor progression. This goal is based on the premise that abnormalities in signal transduction are universal features of human cancer cells, and underiie virtually all aspects of the transformed phenotype. Members of the Signal Transduction Program currently pursue three major investigative areas: (1) kinases and phosphatases that are important in tumor development and known to undergo changes in human tumors; (2) ubiquitin ligases and ubiquitin-like proteins that play important roles in cellular pathways that are deregulated during tumor development and progression; and (3) an emerging theme of altered metabolic signaling in cancer. The Signal Transduction Program was established in 2001, and has been greatly strengthened since the last renewal by recruitment of new faculty members with expertise that complements the interests of the original faculty members. Of the 16 current members, 11 members have been recruited since 2003. Among them is Dr. Ze'ev Ronai, who was recruited as new Program Leader for the Signal Transduction Program in 2004. The Program is highly collaborative and interactive as evidenced by joint laboratory meetings, joint mentoring of graduate students and postdoctoral fellows, joint mentoring program for young faculty, monthly postdoctoral fellow presentations, monthly faculty meetings, monthly interest group (ubiquitin, ER stress) meetings, the annual postdoctoral retreat, and several Program Project grant initiatives underway. As a result of these activities, Program members lead or participate in 4 POl grants (2 from NCI), in multiple shared federal and state grants, and multiple co-authored publications. The high productivity of the Program during the past grant period is further documented by 21 ROI grants (7 from NCI) held by the Program members; by the current total annual grant funding of $14.5MM ($8.2MM direct); by 392 publications since last review, and by 65 Program publications in 2008, which represent 11% of intra- and 31% of interprogrammatic collaborations, respectively.

Public Health Relevance

Abnormalities in signal transduction underiie virtually all aspects of the transformed phenotype. Understanding these processes is expected to produce insights into the development and progression of cancer, to facilitate the development of tools to better probe the biology of cancer, and, ultimately, serve as guidance for therapeutics development.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA030199-31
Application #
8378385
Study Section
Subcommittee G - Education (NCI)
Project Start
2012-05-21
Project End
2015-04-30
Budget Start
2012-05-21
Budget End
2013-04-30
Support Year
31
Fiscal Year
2012
Total Cost
$120,129
Indirect Cost
$102,874
Name
Sanford-Burnham Medical Research Institute
Department
Type
DUNS #
020520466
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Barile, Elisa; Marconi, Guya D; De, Surya K et al. (2017) hBfl-1/hNOXA Interaction Studies Provide New Insights on the Role of Bfl-1 in Cancer Cell Resistance and for the Design of Novel Anticancer Agents. ACS Chem Biol 12:444-455
Attali, Ilan; Tobelaim, William Sam; Persaud, Avinash et al. (2017) Ubiquitylation-dependent oligomerization regulates activity of Nedd4 ligases. EMBO J 36:425-440
Linares, Juan F; Cordes, Thekla; Duran, Angeles et al. (2017) ATF4-Induced Metabolic Reprograming Is a Synthetic Vulnerability of the p62-Deficient Tumor Stroma. Cell Metab 26:817-829.e6
Todoric, Jelena; Antonucci, Laura; Di Caro, Giuseppe et al. (2017) Stress-Activated NRF2-MDM2 Cascade Controls Neoplastic Progression in Pancreas. Cancer Cell 32:824-839.e8
Scortegagna, Marzia; Berthon, Annabel; Settas, Nikolaos et al. (2017) The E3 ubiquitin ligase Siah1 regulates adrenal gland organization and aldosterone secretion. JCI Insight 2:
Jellusova, Julia; Cato, Matthew H; Apgar, John R et al. (2017) Gsk3 is a metabolic checkpoint regulator in B cells. Nat Immunol 18:303-312
Avellaneda Matteo, Diego; Grunseth, Adam J; Gonzalez, Eric R et al. (2017) Molecular mechanisms of isocitrate dehydrogenase 1 (IDH1) mutations identified in tumors: The role of size and hydrophobicity at residue 132 on catalytic efficiency. J Biol Chem 292:7971-7983
Lee, Bongyong; Sahoo, Anupama; Marchica, John et al. (2017) The long noncoding RNA SPRIGHTLY acts as an intranuclear organizing hub for pre-mRNA molecules. Sci Adv 3:e1602505
McKeithan, Wesley L; Savchenko, Alex; Yu, Michael S et al. (2017) An Automated Platform for Assessment of Congenital and Drug-Induced Arrhythmia with hiPSC-Derived Cardiomyocytes. Front Physiol 8:766
Toome, Kadri; Willmore, Anne-Mari A; Paiste, Päärn et al. (2017) Ratiometric in vivo auditioning of targeted silver nanoparticles. Nanoscale 9:10094-10100

Showing the most recent 10 out of 483 publications