The Jackson Laboratory Cancer Center (JAXCC) provides a unique concentration of genetic and genomic expertise focusing on applications of murine model systems and systems genomics in addressing cancer questions. The JAXCC has 47 members in one Research Program, Genetic Models for Precision Cancer Medicine, comprising 3 related themes in cancer cell robustness, genetic and genomic complexity, and progenitor cell biology. Collectively, we seek to determine the molecular drivers of intrinsic cancer resistance, cancer evolution, adaptation, and self-renewal. Innovations In genomic technologies, computational analytics and mouse models for human cancers are integral to all themes, providing a robust interdisciplinary structure. The JAXCC now operates on 3 campuses: JAX Mammalian Genetics (Bar Harbor, ME) with a focus on mouse models for complex genetics;JAX Genomic Medicine (Farmington, CT), with a focus on human cancer genomics;and JAX-West (Sacramento, CA) with a focus on pre-clinical trials using patient-derived-xenograft (PDX) mouse models of human cancer. The scientific leadership of JAX has direct oversight of the Cancer Center: Dr. Edison Liu is President and CEO of JAX and Director of the JAXCC. Dr. Robert Braun Is Vice President for Research of JAX and Deputy Director of the Cancer Center. Drs. Carol Bult, Chengkai Dai and Frank McKeon are co-programming Leaders. Associate Directors for Regional Translational Partnerships (Dr. Kevin Mills) and Research Administration (Dr. Barbara Tennent) expand the leadership structure. A dedicated 7-member External Advisory Board (EAB) advises them. The new leadership, combined with recruitment of new senior and junior investigators, and a significant increase in institutional resources for cancer research heightens the impact ofthe JAXCC. This has been realized In the expanded JAXCC translational outreach through regional and national partnerships (e.g., SWOG). Support is requested for Shared Resources: a) Computational Sciences, for advanced computational and statistical analysis;b) Genome Technologies, for innovations in next generation sequencing, and in metabolomic and proteomic analyses;c) Cancer Model Development for consultation and project management in developing new models;d) Genetic Engineering Technologies for manipulating germline and somatic gene expression in mice;and e) Phenotyping Technologies for microscopy, cytogenetics, clinical assessment, histology and flow cytometry. Funds are also requested for support of annual EAB meetings and JAXCC member retreats. Developmental funds significantly supplemented by institutional funds are requested for a pilot project program to stimulate new cancer research opportunities and for support of new investigators to the JAXCC.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee B - Comprehensiveness (NCI)
Program Officer
Marino, Michael A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Jackson Laboratory
Bar Harbor
United States
Zip Code
Jung, Seung-Hyun; Kim, Min Sung; Lee, Sung-Hak et al. (2016) Whole-exome sequencing identifies recurrent AKT1 mutations in sclerosing hemangioma of lung. Proc Natl Acad Sci U S A 113:10672-7
Qin, Wenning; Kutny, Peter M; Maser, Richard S et al. (2016) Generating Mouse Models Using CRISPR-Cas9-Mediated Genome Editing. Curr Protoc Mouse Biol 6:39-66
Tai, Derek J C; Ragavendran, Ashok; Manavalan, Poornima et al. (2016) Engineering microdeletions and microduplications by targeting segmental duplications with CRISPR. Nat Neurosci 19:517-22
Sundberg, John P; Pratt, C Herbert; Silva, Kathleen A et al. (2016) Dermal lymphatic dilation in a mouse model of alopecia areata. Exp Mol Pathol 100:332-6
Parvanov, Emil D; Tian, Hui; Billings, Timothy et al. (2016) PRDM9 interactions with other proteins provide a link between recombination hotspots and the chromosomal axis in meiosis. Mol Biol Cell :
Ali, Riyasat; Babad, Jeffrey; Follenzi, Antonia et al. (2016) Genetically modified human CD4(+) T cells can be evaluated in vivo without lethal graft-versus-host disease. Immunology 148:339-51
Ishimura, Ryuta; Nagy, Gabor; Dotu, Ivan et al. (2016) Activation of GCN2 kinase by ribosome stalling links translation elongation with translation initiation. Elife 5:
Jangalwe, Sonal; Shultz, Leonard D; Mathew, Anuja et al. (2016) Improved B cell development in humanized NOD-scid IL2Rγ(null) mice transgenically expressing human stem cell factor, granulocyte-macrophage colony-stimulating factor and interleukin-3. Immun Inflamm Dis 4:427-440
Samanta, S; Sun, H; Goel, H L et al. (2016) IMP3 promotes stem-like properties in triple-negative breast cancer by regulating SLUG. Oncogene 35:1111-21
Korstanje, Ron; Deutsch, Konstantin; Bolanos-Palmieri, Patricia et al. (2016) Loss of Kynurenine 3-Mono-oxygenase Causes Proteinuria. J Am Soc Nephrol 27:3271-3277

Showing the most recent 10 out of 958 publications