Major Strengths Of The JAXCC The major focus of the JAXCC is to understand the complex genomics of cancer that leads to primary resistance to therapy, that enables cancer cell adaptation and evolution, and that pushes progenitor cell transformation. Our ability to address these topics comes from our capabilities in developing technologies and analytics for interrogating the cancer cell genome combined with the exceptional ability ofthe JAXCC to query the function of single genes and large-scale genomic changes using a diverse range of genetically defined mouse strains, reference populations, and unique heterogeneous stocks. Collaboration and programmatic integration are deeply embedded in the scientific culture of The Jackson Laboratory. The limited size of our faculty demands such an operating principle. The JAXCC provides a leadership and administrative structure, and is organized as one research program to further enhance transdisciplinary collaboration and integration within our three-campus structure. Throughout the previous grant cycle, this emphasis on collaboration has been shown in both the number and breadth of joint publications and grants from JAXCC members. Figure 2 depicts the network of interactions among current JAXCC members, based on the number of joint authored publications from the JAXCC as well as funded and pending joint grant submissions in which JAXCC members are co-PIs or named as key personnel. The external collaborative network is also robust, as evidenced by the 58% of publications in the last grant cycle co-authored with external investigators.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA034196-29
Application #
8699307
Study Section
Subcommittee G - Education (NCI)
Project Start
1997-08-01
Project End
2019-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
29
Fiscal Year
2014
Total Cost
$175,068
Indirect Cost
$75,029
Name
Jackson Laboratory
Department
Type
DUNS #
042140483
City
Bar Harbor
State
ME
Country
United States
Zip Code
04609
Rutherford, Sarah C; Fachel, Angela A; Li, Sheng et al. (2018) Extracellular vesicles in DLBCL provide abundant clues to aberrant transcriptional programming and genomic alterations. Blood 132:e13-e23
Barthel, Floris P; Wesseling, Pieter; Verhaak, Roel G W (2018) Reconstructing the molecular life history of gliomas. Acta Neuropathol 135:649-670
Winer, Benjamin Y; Shirvani-Dastgerdi, Elham; Bram, Yaron et al. (2018) Preclinical assessment of antiviral combination therapy in a genetically humanized mouse model for hepatitis delta virus infection. Sci Transl Med 10:
Kim, Hyunsoo; Kumar, Pooja; Menghi, Francesca et al. (2018) High-resolution deconstruction of evolution induced by chemotherapy treatments in breast cancer xenografts. Sci Rep 8:17937
Schechter, Lisa M; Creely, David P; Garner, Cherilyn D et al. (2018) Extensive Gene Amplification as a Mechanism for Piperacillin-Tazobactam Resistance in Escherichia coli. MBio 9:
Barthel, Floris P; Johnson, Kevin C; Wesseling, Pieter et al. (2018) Evolving Insights into the Molecular Neuropathology of Diffuse Gliomas in Adults. Neurol Clin 36:421-437
Vian, Laura; P?kowska, Aleksandra; Rao, Suhas S P et al. (2018) The Energetics and Physiological Impact of Cohesin Extrusion. Cell 173:1165-1178.e20
Tarchini, Basile; Longo-Guess, Chantal; Tian, Cong et al. (2018) A spontaneous mouse deletion in Mctp1 uncovers a long-range cis-regulatory region crucial for NR2F1 function during inner ear development. Dev Biol 443:153-164
Garrett, Andrew M; Khalil, Andre; Walton, David O et al. (2018) DSCAM promotes self-avoidance in the developing mouse retina by masking the functions of cadherin superfamily members. Proc Natl Acad Sci U S A 115:E10216-E10224
Huang, Bin; Jia, Dongya; Feng, Jingchen et al. (2018) RACIPE: a computational tool for modeling gene regulatory circuits using randomization. BMC Syst Biol 12:74

Showing the most recent 10 out of 1156 publications