The Proteomics Core Facility makes advanced mass spectrometry instruments, expertise, and methods for protein analysis available to the Case Comprehensive Cancer Center (Case CCC) community. The Core includes two laboratory sites, one on the CWRU campus and one the CCF campus, with a current total of 6,000 sq ft of laboratory space. The Core is directed by Dr. Mark Chance and has a staff of approximately 20 individuals including scientists specializing in mass spectrometry, protein chemistry, instrument engineering, and bioinformatics. A total of 8 mass spectrometry systems are housed in the laboratories, including electrospray and Maldi, and ion trap, ToF, QTof, and FTMS systems. The services that are offered to the Case CCC community are wide-ranging;from a drop-off service for protein identification, to collaborative services for the detection and characterization of post-translation modifications, quantitative proteomics, and protein structural analyses to open instrument access for trained users. Members have used mass spectrometry from the Core, to reveal that the reversible dimelhylation on K140 by histone-modifying enzymes occurs only when it is part of a promoter-bound complex. Other members have utilized the Core to identify DNMTI-associated proteins including HAUSP from a series of pull down experiments. In particular, in-solution samples generated from pull down experiments were analyzed by tandem MS. The Core has provided services for Cancer Center members from 7 of the 8 Scientific Research Programs.

Public Health Relevance

The Case Comprehensive Cancer Center is Northeast Ohio's only NCI designated comprehensive cancer center providing bench-to-bedside medical research Involving partnerships between basic, clinical and population scientists to speed translation of laboratory discoveries into new prevention/intervention and cancer treatments.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA043703-23
Application #
8484960
Study Section
Subcommittee G - Education (NCI)
Project Start
1997-08-01
Project End
2018-03-31
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
23
Fiscal Year
2013
Total Cost
$112,330
Indirect Cost
$41,120
Name
Case Western Reserve University
Department
Type
DUNS #
077758407
City
Cleveland
State
OH
Country
United States
Zip Code
44106
Levinson, Kimberly L; Jernigan, Amelia M; Flocke, Susan A et al. (2016) Intimate Partner Violence and Barriers to Cervical Cancer Screening: A Gynecologic Oncology Fellow Research Network Study. J Low Genit Tract Dis 20:47-51
Cooper, Gregory S; Kou, Tzuyung D; Schluchter, Mark D et al. (2016) Changes in Receipt of Cancer Screening in Medicare Beneficiaries Following the Affordable Care Act. J Natl Cancer Inst 108:
Wiechert, Andrew; Saygin, Caner; Thiagarajan, Praveena S et al. (2016) Cisplatin induces stemness in ovarian cancer. Oncotarget 7:30511-22
Somasegar, Sahana; Li, Li; Thompson, Cheryl L (2016) No association of reproductive risk factors with breast cancer tumor grade. Eur J Cancer Prev :
Kenyon, Jonathan; Nickel-Meester, Gabrielle; Qing, Yulan et al. (2016) Epigenetic Loss of MLH1 Expression in Normal Human Hematopoietic Stem Cell Clones is Defined by the Promoter CpG Methylation Pattern Observed by High-Throughput Methylation Specific Sequencing. Int J Stem Cell Res Ther 3:
Dowlati, A; Lipka, M B; McColl, K et al. (2016) Clinical correlation of extensive-stage small-cell lung cancer genomics. Ann Oncol 27:642-7
Markowitz, Sanford D; Nock, Nora L; Schmit, Stephanie L et al. (2016) A Germline Variant on Chromosome 4q31.1 Associates with Susceptibility to Developing Colon Cancer Metastasis. PLoS One 11:e0146435
Wang, Y; Deng, O; Feng, Z et al. (2016) RNF126 promotes homologous recombination via regulation of E2F1-mediated BRCA1 expression. Oncogene 35:1363-72
Doherty, Mary R; Smigiel, Jacob M; Junk, Damian J et al. (2016) Cancer Stem Cell Plasticity Drives Therapeutic Resistance. Cancers (Basel) 8:
Blum, Andrew E; Venkitachalam, Srividya; Guo, Yan et al. (2016) RNA Sequencing Identifies Transcriptionally Viable Gene Fusions in Esophageal Adenocarcinomas. Cancer Res 76:5628-5633

Showing the most recent 10 out of 1148 publications